Fundamentals of Materials Science and Engineering: An Integrated Approach, 3e

(Nora) #1

P1: PSB Printer: tb-gts4c


GTBL042-Index GTBL042-Callister-v3 October 18, 2007 20:15


2nd Revise Page

866 • Index

Ethers, 101
Ethylene, 99
polymerization, 101–102
Ethylene glycol (structure), 605
Euro coins, alloys used for, 539
Eutectic isotherm, 357
Eutectic phase, 366, 843
Eutectic reactions, 357, 364, 843
iron-iron carbide system, 381, 383
Eutectic structure, 366, 843
Eutectic systems:
binary, 356–369
microstructure development,
361–369
Eutectoid, shift of position,
391–392
Eutectoid ferrite, 387
Eutectoid reactions, 371, 843
iron-iron carbide system, 383
kinetics, 414–416
Eutectoid steel, microstructure
changes/development,
384–386
Exchange current density, 672
Excited states, 764, 843
Exhaustion, in extrinsic
semiconductors, 482
Expansion, thermal,seeThermal
expansion
Extrinsic semiconductors, 477–481,
843
electron concentrationvs.
temperature, 482
exhaustion, 482
saturation, 482
Extrusion, 843
clay products, 596
metals, 571
polymers, 609–610

F
Fabrication:
ceramics, 589–591
clay products, 594–599
fiber-reinforced composites,
648–650
metals, 569–574
Face-centered cubic structure,
40–41, 843
anion stacking (ceramics), 79–80
Burgers vector for, 249
close packed planes (metals),
77–79
slip systems, 248
Factor of safety, 232, 302

Failure, mechanical,seeCreep;
Fatigue; Fracture
Faraday constant, 667
Fatigue, 314–326, 843
corrosion, 325–326
crack initiation and propagation,
320–322
cyclic stresses, 315–317
environmental effects, 325–326
low- and high-cycle, 319
polymers, 319–320
probability curves, 319
thermal, 325
Fatigue life, 318, 843
factors that affect, 322–325
Fatigue limit, 317, 318, 843
Fatigue strength, 317, 318, 843
Fatigue testing, 317
S-Ncurves, 317–319, 320, 336
Feldspar, 595
Fermi energy, 465, 480, 708, 843
Ferrimagnetism, 731–735, 843
temperature dependence,
735–736
Ferrite (α), 380–382, 843
eutectoid/proeutectoid, 339,
387–388, 849
from decomposition of cementite,
524
Ferrites (magnetic ceramics),
731–733, 843
Curie temperature, 735–736
as magnetic storage, 748
Ferritic stainless steels, 522, 523
Ferroelectricity, 507–508, 843
Ferroelectric materials, 507–508
Ferromagnetic domain walls, 147
Ferromagnetism, 729–730, 844
temperature dependence,
735–736
Ferrous alloys, 844 .See alsoCast
irons; Iron; Steels
annealing, 575–577
classification, 383, 518
continuous cooling
transformation diagrams,
426–429
costs, 829–830
hypereutectoid, 388–391, 845
hypoeutectoid, 386–388, 845
isothermal transformation
diagrams, 414–426
microstructures, 384–391
mechanical properties of,
430–434, 809–810

Fiber efficiency parameter, 634
Fiberglass, 541
Fiberglass-reinforced composites,
637–638
Fiber-reinforced composites,
625–650, 844
continuous and aligned, 627–633
discontinuous and aligned,
633–634
discontinuous and randomly
oriented, 634–635
fiber length effect, 625–626
fiber orientation/concentration
effect, 626–635
fiber phase, 635–637
longitudinal loading, 627–631, 632
matrix phase, 637
processing, 648–650
reinforcement efficiency, 635
transverse loading, 631, 633–635
Fibers, 557, 844
coefficient of thermal expansion
values, 818
in composites, 619
continuousvs. discontinuous,
625–626
fiber phase, 635–637
length effect, 625–626
orientation and concentration,
626–635
costs, 833
density values, 804
elastic modulus values, 636, 807
electrical resistivity values, 827
optical, 781–785
polymer, 557
properties of selected, 636
specific heat values, 824
spinning of, 610–611
tensile strength values, 636, 813
thermal conductivity values, 821
Fick’s first law, 166, 713, 844
for polymers, 179
Fick’s second law, 167, 720, 844
Fictive temperature, 590
Filament winding, 650
Fillers, 606, 844
Films:
diamond, 550–551
polymer, 558–559
shrink-wrap (polymer), 278
Fine pearlite, 417–418, 430, 432, 844
Fireclay refractories, 544
Firing, 543, 598–599, 844
Flame retardants, 607, 844
Free download pdf