A.5 Orthogonal Polynomials 321
4.Prove that the vector Appell equation, namely
C
′
j=jCj−^1 ,j>^0 ,
is satisfied by the column vector
Cj=
[
(
j
0
)− 1
φj
(
p+1
1
)− 1
φj+1
(
j+2
2
)− 1
φj+2
···
(
j+n− 1
n− 1
)− 1
φj+n− 1
]T
n
,n≥ 1.
5.If
fnm=
m
∑
r=0
(−1)
r
(
m
r
)
φrφn−r,n≥m,
prove that
f
′
nm
=(n−m)fn− 1 ,m.
A.5 Orthogonal Polynomials
The following brief notes relate to the Laguerre, Hermite, and Legendre
polynomials which appear in the text.
Laguerre PolynomialsL
(α)
n
(x)andLn(x)
Definition.
L
(α)
n (x)=(n+α)!
n
∑
r=0
(−1)
r
x
r
r!(n−r)! (r+α)!
,
Ln(x)=L
(0)
n (x)=
n
∑
r=0
(−1)
r
(
n
r
)
x
r
r!
.
Rodrigues formula.
Ln(x)=
e
x
n!
D
n
(e
−x
x
n
); D=
d
dx
.
Generating function relation.
(1−t)
− 1
e
−xt/(1−t)
=
∞
∑
n=0
Ln(x)t
n
;
Recurrence relations.
(n+1)Ln+1(x)−(2n+1−x)Ln(x)=+nLn− 1 (x)=0,
xL
′
n(x)=n[Ln(x)−Ln−^1 (x)];