A.5 Orthogonal Polynomials 3214.Prove that the vector Appell equation, namelyC
′
j=jCj−^1 ,j>^0 ,is satisfied by the column vectorCj=[
(
j0)− 1
φj(
p+11)− 1
φj+1(
j+22)− 1
φj+2···
(
j+n− 1n− 1)− 1
φj+n− 1]T
n,n≥ 1.5.Iffnm=m
∑r=0(−1)
r(
mr)
φrφn−r,n≥m,prove thatf′
nm
=(n−m)fn− 1 ,m.A.5 Orthogonal Polynomials
The following brief notes relate to the Laguerre, Hermite, and Legendre
polynomials which appear in the text.
Laguerre PolynomialsL
(α)
n(x)andLn(x)
Definition.
L
(α)
n (x)=(n+α)!n
∑r=0(−1)
r
x
rr!(n−r)! (r+α)!,
Ln(x)=L(0)
n (x)=n
∑r=0(−1)
r(
nr)
x
rr!.
Rodrigues formula.
Ln(x)=exn!D
n
(e−x
xn
); D=ddx.
Generating function relation.
(1−t)− 1
e−xt/(1−t)
=∞
∑n=0Ln(x)tn
;Recurrence relations.
(n+1)Ln+1(x)−(2n+1−x)Ln(x)=+nLn− 1 (x)=0,xL′
n(x)=n[Ln(x)−Ln−^1 (x)];