Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
A.5 Orthogonal Polynomials 321

4.Prove that the vector Appell equation, namely

C


j=jCj−^1 ,j>^0 ,

is satisfied by the column vector

Cj=

[

(

j

0

)− 1

φj

(

p+1

1

)− 1

φj+1

(

j+2

2

)− 1

φj+2

···

(

j+n− 1

n− 1

)− 1

φj+n− 1

]T

n

,n≥ 1.

5.If

fnm=

m

r=0

(−1)

r

(

m

r

)

φrφn−r,n≥m,

prove that

f


nm
=(n−m)fn− 1 ,m.

A.5 Orthogonal Polynomials


The following brief notes relate to the Laguerre, Hermite, and Legendre


polynomials which appear in the text.


Laguerre PolynomialsL


(α)
n

(x)andLn(x)


Definition.


L

(α)
n (x)=(n+α)!

n

r=0

(−1)

r
x
r

r!(n−r)! (r+α)!

,

Ln(x)=L

(0)
n (x)=

n

r=0

(−1)

r

(

n

r

)

x
r

r!

.

Rodrigues formula.


Ln(x)=

e

x

n!

D

n
(e

−x
x

n
); D=

d

dx

.

Generating function relation.


(1−t)

− 1
e

−xt/(1−t)
=



n=0

Ln(x)t

n
;

Recurrence relations.


(n+1)Ln+1(x)−(2n+1−x)Ln(x)=+nLn− 1 (x)=0,

xL


n(x)=n[Ln(x)−Ln−^1 (x)];
Free download pdf