Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1
Evaluating Binomial Coefficients

Evaluate each binomial coefficient.


(a) Let.


Subtract.

Definition of nfactorial

Lowest terms

Binomial coefficients will always be whole numbers.


(b)


(c)


FIGURE 4shows how a graphing calculator displays the binomial coefficients computed


here. NOW TRY


We now state the binomial theorem,or the general binomial expansion.


6 C 3 =


6!


3! 16 - 32!


=


6!


3!3!


=


6 # 5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 3 # 2 # 1

= 20


5 C 3 =


5!


3! 15 - 32!


=


5!


3!2!


=


5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 2 # 1

= 10


= 5


=


5 # 4 # 3 # 2 # 1
4 # 3 # 2 # 1 # 1

=


5!


4!1!


5 C 4 = n=5, r=^4


5!


4! 15 - 42!


EXAMPLE 3


Formula for the Binomial Coefficient

For nonnegative integers nand r, where


nCr


n!


r! 1 nr 2!


.


r...n,


nCr

Binomial Theorem

For any positive integer n,





n!


3! 1 n 32!


xn^3 y^3  ###


n!


1 n 12 !1!


xyn^1 yn.


1 xy 2 nxn


n!


1! 1 n 12!


xn^1 y


n!


2! 1 n 22!


xn^2 y^2


The binomial theorem can be written in summation notation as


NOTE We used the letter kas the summation index letter in the statement just given.


This is customary notation in mathematics.


1 xy 2 n a


n

k 0

n!


k! 1 nk 2!


xnk^ yk.


FIGURE 4

NOW TRY
EXERCISE 3
Evaluate. 7 C 2


NOW TRY ANSWER



  1. 21


SECTION 12.4 The Binomial Theorem 703

Free download pdf