Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1

Future Value of an Ordinary Annuity


where Sis the future value, Ris the payment at the end of
each period, iis the interest rate per period, and nis the
number of periods.


Sum of the Terms of an Infinite Geometric Sequence
with


S


a 1
1 r

|r|< 1

SRc

11 i 2 n 1
i

d,

If $5800 is deposited into an ordinary annuity at the end of each
quarter for 4 yr and interest is earned at 2.4% compounded quarterly,
then

and

The sum Sof the terms of an infinite geometric sequence with
and is

S=

1


1 -^12


=


1


1
2

= 1 #


2


1


=2.


r=^12

a 1 = 1

S= 5800 c

11 +0.006 216 - 1


0.006


d=$97,095.24.

i= n= 4142 =16,

0.024


4


R=$5800, =0.006,


CONCEPTS EXAMPLES


12.4 The Binomial Theorem


Factorials
For any positive integer n,


By definition,


Binomial Coefficient


General Binomial Expansion
For any positive integer n,


rth Term of the Binomial Expansion of


n!
1 r 12! 3 n 1 r 124!

xn^1 r^12 yr^1

1 xy 2 n

+yn.

+


n!
1 n- 12 !1!

+ xyn-^1

n!
3! 1 n- 32!

xn-^3 y^3 +Á

+


n!
2! 1 n- 22!

= xn+ xn-^2 y^2

n!
1! 1 n- 12!

xn-^1 y

1 x+y 2 n


nCr r◊n

n!
r! 1 nr 2!

,


0!1.


n!n 1 n 121 n 22 Á 122112.


The eighth term of is

Simplify.
=-15,360a^3 b^7. Multiply.

= 1201 - 1282 a^3 b^7

=


10 # 9 # 8
3 # 2 # 1

a^31 - 227 b^7

10!


7!3!


a^31 - 2 b 27

1 a- 2 b 210

= 16 x^4 - 96 x^3 + 216 x^2 - 216 x+ 81

= 16 x^4 - 12182 x^3 + 54142 x^2 - 216 x+ 81

= 24 x^4 - 41223 x^3132 + 61222 x^2192 - 412 x 21272 + 81

4!


3! 1!


12 x 21 - 323 + 1 - 324

= 12 x 24 +

4!


1! 3!


12 x 231 - 32 +

4!


2! 2!


12 x 221 - 322 +

12 x- 324

=


5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 2 # 1

5 C 3 = = 10


5!


3! 15 - 32!


=


5!


3!2!


4!= 4 # 3 # 2 # 1 = 24


708 CHAPTER 12 Sequences and Series


y=- 2 b, r= 8

n=10, x=a,
Free download pdf