20.Concept Check Consider this system.
Match each determinant in parts (a) – (d) with its correct representation from choices A –D.
(a)D (b) (c) (d)
A. B.
C. D.
Use Cramer’s rule to solve each linear system. See Example 4.
(^3)
4
7
- 2
3
- 4
1
- 2
3
- 8
3 3
4
7
- 2
1
2
0
- 2
3
- 8
3
(^3)
4
7
- 2
3
- 4
1
1
2
0
3 3
1
2
0
3
- 4
1
- 2
3
- 8
3
Dx Dy Dz
- 2 x+ y- 8 z= 0
7 x- 4 y+ 3 z= 2
4 x+ 3 y- 2 z= 1
722 APPENDIX A Determinants and Cramer’s Rule
21. 22.
- 2 x+ 3 y= 16
3 x+ 5 y=- 5
4 x- 3 y=- 30
5 x+ 2 y=- 3
23. 24.
6 x- 5 y= 2
8 x+ 3 y= 1
2 x+ 5 y= 8
3 x- y= 9
25. 26.
5 x+ 6 y= 7
2 x+ 3 y= 4
7 x+ 8 y= 9
4 x+ 5 y= 6
27. 28.
x+ 2 y- 6 z=- 26
x- y+ 2 z= 5
2 x+ 3 y+ 2 z= 15
x+ 9 y+ 2 z=- 19
3 x+ 3 y- z= 1
x- y+ 6 z= 19
29. 30.
- 4 x+ 6 y- 8 z=- 16
6 x- 9 y+ 12 z= 24
2 x- 3 y+ 4 z= 8
- 6 x+ 9 y- 3 z=- 6
2 x- 3 y+ z= 2
7 x+ y- z= 4
31. 32.
- y+ 2 z=- 11
2 x+ 3 y= 1
3 x+ 5 z= 0
2 x+ z=- 1
3 x+ y=- 5
- x+ 2 y= 4
Use Cramer’s rule where applicable to solve each linear system. See Examples 5 and 6.
33. 34.
- x+ z=- 7
2 y+ z= 5
x- 3 y= 13
- y- 2 z=- 13
3 x+ 2 y+ z=- 3
- 5 x- y=- 10
Solve each equation by finding an expression for the determinant on the left, and then solving
using the methods of Chapter 2.
35. 36. 37. 38.`
5
x
3
x
^
=^20
x
x
4
- 3
^
=^0
- 2
x
10
6
^
=^0
4
2
x
3
(^) ` = 8