Science - USA (2022-05-27)

(Maropa) #1

overlayer reformed. The system thus equili-
brated by reverting to an oxygen-induced SMSI
state, which was formed in this case directly,
without prior initialization through the well-
known high-temperature reduction route. This
nonclassical, oxygen-induced SMSI state was
recently observed by Tanget al.( 20 ).
The dynamic behavior described in this work
remains unnoticed in ex situ and postmortem
studies, highlighting the importance of in situ
observations. The complex interplay between
metal and support underreaction conditions
that was described here for the model reaction
of H 2 oxidation shows how synergistic inter-
actions emerge at strained interfaces between
metals and reducible supports and provide a
means for lowering oxidation barriers. Be-
cause these effects are influenced by the local
structure of the interface of each individual
particle, those insights are even hidden for
integral in situ methods that average over a
large fraction of a sample. The reported in-
dividual behavior and its correlation to struc-
ture have to be included in models that aim to
describe the overall structural transformations
of a catalyst under redox conditions. Theory
may then provide insight into how the dy-
namic behavior and interfacial redox processes
lead to the formationand disappearance of
active sites that link the restructuring and
motion directly to the reaction kinetics.


REFERENCES AND NOTES



  1. M. Haruta,Catal. Today 36 , 153–166 (1997).

  2. T. W. van Deelen, C. Hernández Mejía, K. P. de Jong,Nat. Catal.
    2 , 955–970 (2019).

  3. S. J. Tauster, S. C. Fung, R. L. Garten,J. Am. Chem. Soc. 100 ,
    170 – 175 (1978).

  4. A. Becket al., Nat. Commun. 11 , 3220 (2020).

  5. W. Zhaoet al., J. Phys. Chem. C 125 , 10386–10396 (2021).

  6. X. Wang, A. Beck, J. A. van Bokhoven, D. Palagin,J. Mater.
    Chem. A Mater. Energy Sustain. 9 , 4044–4054 (2021).

  7. D. N. Belton, Y. M. Sun, J. M. White,J. Phys. Chem. 88 ,
    1690 – 1695 (1984).

  8. C. S. Ko, R. J. Gorte,J. Catal. 90 ,59–64 (1984).

  9. R. A. Demmin, C. S. Ko, R. J. Gorte,J. Phys. Chem. 89 ,
    1151 – 1154 (1985).

  10. S. Bernalet al., J. Chem. Soc., Faraday Trans. 92 , 2799– 2809
    (1996).

  11. S. Zhanget al., Nano Lett. 16 , 4528–4534 (2016).

  12. J. Leeet al., J. Catal. 330 ,19 –27 (2015).
    13. D. Liuet al., J. Catal. 266 , 380–390 (2009).
    14. J. Liet al., ACS Catal. 9 , 6342–6348 (2019).
    15. X. Liuet al., J. Am. Chem. Soc. 134 , 10251–10258 (2012).
    16. T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl,
    M. G. Willinger,Angew. Chem. 127 , 4627–4631 (2015).
    17. H. Tanget al., Chem. Sci. 9 , 6679–6684 (2018).
    18. S. Liuet al., Nat. Commun. 10 , 5790 (2019).
    19. S. Liuet al., ACS Catal. 11 , 6081–6090 (2021).
    20. M. Tanget al., Angew. Chem. Int. Ed. 60 , 22339–22344 (2021).
    21. H. Tanget al., J. Am. Chem. Soc. 138 ,56–59 (2016).
    22. H. Tanget al., Angew. Chem. Int. Ed. 55 , 10606– 10611
    (2016).
    23. A. K. Datye, M. Votsmeier,Nat. Mater. 20 , 1049– 1059
    (2021).
    24. G. L. Haller, D. E. Resasco, inAdvances in Catalysis(Elsevier,
    1989), vol. 36, pp. 173–235; https://linkinghub.elsevier.com/
    retrieve/pii/S0360056408600188.
    25. A. Corma, P. Serna, P. Concepción, J. J. Calvino,J. Am. Chem. Soc.
    130 ,8748–8753 (2008).
    26. J. C. Matsubuet al., Nat. Chem. 9 , 120–127 (2017).
    27. R. M. Kennedyet al., Catal. Lett. 148 , 2223–2232 (2018).
    28. M. Macinoet al.,Nat. Catal. 2 , 873–881 (2019).
    29. M. G. Willingeret al., Angew. Chem. Int. Ed. 53 ,5998–6001 (2014).
    30. S. Shaikhutdinov,Catal. Lett. 148 , 2627–2635 (2018).
    31. O. Dulub, W. Hebenstreit, U. Diebold,Phys. Rev. Lett. 84 ,
    3646 – 3649 (2000).
    32. P. L. Hansenet al., Science 295 , 2053–2055 (2002).
    33. T. Altantziset al., Nano Lett. 19 , 477–481 (2019).
    34. H. Yoshidaet al., Appl. Phys. Express 4 , 065001 (2011).
    35. Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, S. Takeda,
    Angew. Chem. Int. Ed. 51 , 7729–7733 (2012).
    36. T. W. Hansenet al., Science 294 , 1508–1510 (2001).
    37. Y. Kuwauchiet al., Nano Lett. 13 , 3073–3077 (2013).
    38. Y. Liet al., Nat. Commun. 12 , 914 (2021).
    39. J. B. Wagner, F. Cavalca, C. D. Damsgaard, L. D. L. Duchstein,
    T. W. Hansen,Micron 43 , 1169–1175 (2012).
    40. M. Plodinecet al., Microsc. Microanal. 26 , 220–228 (2020).
    41. M. Boniface, M. Plodinec, R. Schlögl, T. Lunkenbein,Top. Catal.
    63 , 1623–1643 (2020).
    42. A. Becket al., Nat. Catal. 4 , 488–497 (2021).
    43. W. Yuanet al., Science 371 , 517–521 (2021).
    44. J. Vincent, P. Crozier,Microsc. Microanal. 26 (S2), 1694– 1695
    (2020).
    45. A. Akramet al., Chem. Sci. 7 , 5833–5837 (2016).
    46. M. Chiet al., Nat. Commun. 6 , 8925 (2015).
    47. J. Resasco, S. Dai, G. Graham, X. Pan, P. Christopher,
    J. Phys. Chem. C 122 , 25143–25157 (2018).
    48. X. Du, H. Tang, B. Qiao,Catalysts 11 , 896 (2021).
    49. R. Vanselow, M. Mundschau,J. Catal. 103 , 426–435 (1987).
    50. X. Xu, Q. Fu, L. Gan, J. Zhu, X. Bao,J. Phys. Chem. B 122 ,
    984 – 990 (2018).
    51. U. Diebold,Surf. Sci. Rep. 48 ,53–229 (2003).
    52. T. Kandemiret al., Angew.Chem.Int.Ed. 52 ,5166– 5170
    (2013).
    53. A. Becket al., J. Phys. Chem. C 125 , 22531–22538 (2021).
    54. J. M. Herrmann, M. Gravelle-Rumeau-Maillot, P. C. Gravelle,
    J. Catal. 104 , 136–146 (1987).
    55. G. B. Raupp, J. A. Dumesic,J. Phys. Chem. 89 , 5240– 5246
    (1985).
    56. C. Spreafico, W. Karim, Y. Ekinci, J. A. van Bokhoven,
    J. VandeVondele,J. Phys. Chem. C 121 , 17862–17872 (2017).
    57. K. Zhang, L. Li, S. Shaikhutdinov, H.-J. J. Freund,Angew. Chem.
    Int. Ed. 57 , 1261–1265 (2018).
    58. A. J. Fox, B. Drawl, G. R. Fox, B. J. Gibbons,
    S. Trolier-McKinstry,IEEE Trans. Ultrason. Ferroelectr. Freq.
    Control 62 ,56–61 (2015).
    59. P. Müller, R. Kern,Surf. Sci. 457 , 229–253 (2000).
    60. C. Castellarin-Cudiaet al., Surf. Sci. 554 , L120–L126 (2004).
    61. A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni,
    ACS Catal. 7 , 6493–6513 (2017).
    62. J. L. Vincent, P. A. Crozier,Microsc. Microanal. 25 (S2),
    1508 – 1509 (2019).
    63. S. C. Ammal, A. Heyden,J. Chem. Phys. 133 , 164703
    (2010).
    64. C. Bäumer, R. Dittmann, inMetal Oxide-Based Thin Film
    Structures(Elsevier, 2018), pp. 489–522; https://linkinghub.
    elsevier.com/retrieve/pii/B9780128111666000200.
    65. R. J. Kamaladasaet al., Microsc. Microanal. 21 , 140– 153
    (2015).
    66. D. S. Jeong, H. Schroeder, U. Breuer, R. Waser,J. Appl. Phys.
    104 , 123716 (2008).
    67. L. A. Bursill, B. G. Hyde,Philos. Mag. 23 ,3–15 (1971).
    68. L. A. Bursill, B. G. Hyde, D. K. Philp,Philos. Mag. 23 , 1501– 1513
    (1971).
    69. B. F. Donovanet al., Acta Mater. 127 , 491–497 (2017).
    70. M. D. Rasmussen, L. M. Molina, B. Hammer,J. Chem. Phys.
    120 , 988–997 (2004).
    71. P. Liuet al., Nanoscale 11 , 11885–11891 (2019).
    72. W. Gao, Z. D. Hood, M. Chi,Acc. Chem. Res. 50 , 787–795 (2017).
    73. P.Mars,D.W.vanKrevelen,Chem.Eng.Sci. 3 ,41 –59 (1954).
    74. R. Schaubet al., Phys. Rev. Lett. 87 , 266104 (2001).


ACKNOWLEDGMENTS
Funding:H.F. and M.G.W. acknowledge the SNSF project
200021_181053; A.B. and J.A.vB. acknowledge the SNSF project
200021_178943.Author contributions:Conceptualization: M.G.W.;
Investigation: H.F., A.B., X.H., and M.G.W.; Visualization: H.F. and
M.G.W.; Funding acquisition: M.G.W.; Project administration: M.G.W.
and J.A.vB.; Supervision: M.G.W., X.H., and J.A.vB.; Writing—
original draft: H.F. and M.G.W.; Writing—review and editing: M.G.W.,
H.F., A.B., X.H., and J.A.vB.Competing interests:The authors
declare that they have no competing interests.Data and materials
availability:All data are available in the main text or the
supplementary materials; additional details can be requested from
the corresponding authors. Further high-resolution data are stored
in the public data repository of ETH Zürich under https://www.
research-collection.ethz.ch/handle/20.500.11850/546680.License
information:This research was funded in whole or in part by
SNSF project 200021_181053 and 200021_178943, a cOAlition S
organization. The author will make the Author Accepted Manuscript
(AAM) version available under a CC BY public copyright license.

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abm3371
Materials and Methods
Figs. S1 to S6
References ( 75 , 76 )
Movies S1 to S8
Submitted 14 September 2021; resubmitted 1 March 2022
Accepted 20 April 2022
10.1126/science.abm3371

Freyet al., Science 376 , 982–987 (2022) 27 May 2022 5of5


RESEARCH | RESEARCH ARTICLE

Free download pdf