Science - USA (2022-05-27)

(Maropa) #1

provide greater understanding of how naïve
and memory T cell repertoires are main-
tained and persist in normal and patholog-
ical conditions.


REFERENCES AND NOTES



  1. S.E.Hamilton,S.C.Jameson,Trends Immunol. 33 ,224–230 (2012).

  2. S. S. Hwanget al., Science 367 , 1255–1260 (2020).

  3. V. Kalia, L. A. Penny, Y. Yuzefpolskiy, F. M. Baumann, S. Sarkar,
    Immunity 42 , 1116–1129 (2015).

  4. H. Cantor, E. A. Boyse,J. Exp. Med. 141 , 1376–1389 (1975).

  5. J. A. Ledbetter, W. E. Seaman, T. T. Tsu, L. A. Herzenberg,
    J. Exp. Med. 153 , 1503–1516 (1981).

  6. A. M. Norment, R. D. Salter, P. Parham, V. H. Engelhard,
    D. R. Littman,Nature 336 ,79–81 (1988).

  7. A. Veillette, M. A. Bookman, E. M. Horak, J. B. Bolen,Cell 55 ,
    301 – 308 (1988).
    8. M. N. Artyomov, M. Lis, S. Devadas, M. M. Davis,
    A. K. Chakraborty,Proc. Natl. Acad. Sci. U.S.A. 107 ,
    16916 – 16921 (2010).
    9. W. P. Fung-Leunget al., Cell 65 , 443–449 (1991).
    10. S. D. Gorman, Y. H. Sun, R. Zamoyska, J. R. Parnes,J. Immunol.
    140 , 3646–3653 (1988).
    11. H. S. Azzamet al., J. Exp. Med. 188 , 2301–2311 (1998).
    12. A. E. Moranet al., J. Exp. Med. 208 , 1279–1289 (2011).
    13. J. E. Knapp, D. Liu,Methods Mol. Biol. 245 , 245– 250
    (2004).
    14. S. Yaoet al., Immunity 34 , 729–740 (2011).
    15. Y. Zhuet al., Nat. Commun. 4 , 2043 (2013).
    16. J. Wanget al., Cell 176 , 334–347.e12 (2019).
    17. I. Shiratori, K. Ogasawara, T. Saito, L. L. Lanier, H. Arase,
    J. Exp. Med. 199 , 525–533 (2004).
    18. J. Wang, I. Shiratori, J. Uehori, M. Ikawa, H. Arase,Nat. Immunol.
    14 ,34–40 (2013).
    19. Y. Sunet al., J. Immunol. 193 , 860–870 (2014).
    20. J. L. Riley, C. H. June,Blood 105 ,13 –21 (2005).
    21. Y. Sunet al., J. Biol. Chem. 287 , 15837–15850 (2012).
    22. A. Kogure, I. Shiratori, J. Wang, L. L. Lanier, H. Arase,
    Biochem. Biophys. Res. Commun. 405 , 428–433 (2011).
    23. H. J. Parket al., Mol. Cells 33 , 259–267 (2012).
    24. K. I. Ohet al., Exp. Mol. Med. 39 , 176–184 (2007).
    25. D. S. Riddleet al., Eur. J. Immunol. 38 , 1511– 1521
    (2008).
    26. M. T. Scherer, L. Ignatowicz, G. M. Winslow, J. W. Kappler,
    P. Marrack,Annu. Rev. Cell Biol. 9 , 101–128 (1993).
    27. J. X. Gaoet al., J. Exp. Med. 195 , 959–971 (2002).
    28. A. C. Davalos-Misslitz, T. Worbs, S. Willenzon, G. Bernhardt,
    R. Förster,Blood 110 , 4351–4359 (2007).
    29. M. A. ElTanboulyet al., Science 367 , eaay0524
    (2020).


ACKNOWLEDGMENTS
We thank S. Ma for the statistical discussions in our study. We
thank C. Brennick and B. Cadugan for editing the manuscript and
staff members at the Yale Genome Editing Center, Yale Center for

Zhenget al., Science 376 , 996–1001 (2022) 27 May 2022 5of6


**

0

5

10

15

IFNγ

+ %

of

CD8

+ T cells

CD69

+ %

of CD8

+ T

cells

A B

E

0

5

10

15

CD

1

CD8

+ T cell number

(×10

6 )

*

control 9B12

lymph node

0

2

3

4

**

spleen

control 9B12

lymph node
ns

control 9B12

1
CD4

+ T cell number

(×10

6 )

0

2

3

4

5

0

5

10

15

spleen
ns

control 9B12

control 9B12

****

control 9B12

0

10

20

30

40 ****

lymph node

control 9B12

0

5

10

15

20

(^25) ****
spleen
control 9B12




2
0
4
6
8
lymph node
control 9B12
*
0
5
10
15
spleen
control 9B12
0
10
20
(^30)

lymph node
control 9B12
CD8



  • %
    4
    5
    6
    7
    8
    9 **
    spleen
    control 9B12
    CD8

  • %
    5
    CD8

  • T cell number
    (×10
    6 )
    4
    6
    7
    8
    CD8

  • %
    CD8

  • %
    CD8

  • T cell number
    (×10
    6 )
    CD8

  • T cell number
    (×10
    6 )
    0
    5
    10
    15
    20
    25
    ns
    lymph node
    control 9B12
    CD4

  • %
    0
    5
    10
    15
    20
    ns
    spleen
    control 9B12
    CD4

  • %
    CD4

  • T cell number
    (×10
    6 )
    Fig. 4. Blockade of PILRa–CD8ainteractions disrupts CD8+T cell homeostasis
    and quiescence.(A) B6 WT mice were administered 200mg of control or
    9B12 antibody intraperitoneally (i.p.) every 3 to 4 days starting on day 0. The
    frequency and the absolute number of CD8+T cells among lymph node and
    spleen cells were examined on day 15. (B andC) Thymectomized B6 WT mice
    were administered 200mg of control or 9B12 antibody i.p. every 3 days starting
    from day 0. CD8+T cell frequency and cell number (B), and CD4+Tcellfrequency
    and cell number (C) in the lymph node and spleen were examined on day 14.
    (D) One day after 200mg of control or 9B12 antibody was administered to B6 WT
    mice i.p., lymph node CD8+T cells were analyzed for CD69 expression by
    flow cytometry. (E) One day after 200mg of control or 9B12 antibody was
    administered to B6 WT mice i.p., CD8+T cells purified from lymph node cells
    were stimulated by phorbol 12-myristate 13-acetate (PMA), ionomycin, and
    brefeldin A and analyzed for IFN-gexpression by flow cytometry. Representative
    data of two [(B) and (C)], three [(A) and (E)], and eight (D) independent
    experiments are shown.n = 3 mice per group in (B), (C), (D), and (E).n = 5 mice
    per group in (A). Mean ± SD is shown. *P< 0.05, P< 0.01, **P< 0.0001
    by unpaired Student’s t test. ns, not significant.
    RESEARCH | REPORT

Free download pdf