1.9 Fourier Integral 107
Now we modify Eq. (1). Letλn=nπ/aand define two functions
Aa(λ)=^1
π
∫a
−a
f(x)cos(λx)dx, Ba(λ)=^1
π
∫a
−a
f(x)sin(λx)dx. (3)
Notice that
an=π
a
Aa(λn), bn=π
a
Ba(λn).
Because of this, the Fourier series Eq. (1) becomes
f(x)=a 0 +
∑∞
n= 1
[
Aa(λn)cos(λnx)+Ba(λn)sin(λnx)
]
· λ, −a<x<a, (4)
where λ=π/a=λn+ 1 −λn.
The form in which Eq. (4) is written is chosen to suggest an integral with
respect toλover the interval 0<λ<∞. We may imagineaincreasing to
infinity, so λ→0and
Aa(λ)→A(λ)=^1
π
∫∞
−∞
f(x)cos(λx)dx, (5)
Ba(λ)→B(λ)=^1
π
∫∞
−∞
f(x)sin(λx)dx, (6)
anda 0 →0. Then Eq. (4) suggests
f(x)=
∫∞
0
[
A(λ)cos(λx)+B(λ)sin(λx)
]
dλ, −∞<x<∞. (7)
Example 1 (continued).
Forf(x)as in Example 1, we find
A(λ)=π^1
∫∞
0
e−xcos(λx)dx=π( 11 +λ (^2) ),
B(λ)=^1
π
∫∞
0
e−xsin(λx)dx= λ
π( 1 +λ^2 )
,
and therefore we expect that
∫∞
0
[
1
π( 1 +λ^2 )cos(λx)+
λ
π( 1 +λ^2 )sin(λx)
]
dx=
{
e−x, 0 <x,
0 , x<0.
The foregoing derivation is not a proof, but it does suggest the following
theorem.