1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
1.9 Fourier Integral 107
Now we modify Eq. (1). Letλn=nπ/aand define two functions

Aa(λ)=^1
π

∫a

−a

f(x)cos(λx)dx, Ba(λ)=^1
π

∫a

−a

f(x)sin(λx)dx. (3)

Notice that


an=π
a

Aa(λn), bn=π
a

Ba(λn).

Because of this, the Fourier series Eq. (1) becomes


f(x)=a 0 +

∑∞

n= 1

[

Aa(λn)cos(λnx)+Ba(λn)sin(λnx)

]

·   λ, −a<x<a, (4)

where λ=π/a=λn+ 1 −λn.
The form in which Eq. (4) is written is chosen to suggest an integral with
respect toλover the interval 0<λ<∞. We may imagineaincreasing to
infinity, so λ→0and


Aa(λ)→A(λ)=^1
π

∫∞

−∞

f(x)cos(λx)dx, (5)

Ba(λ)→B(λ)=^1
π

∫∞

−∞

f(x)sin(λx)dx, (6)

anda 0 →0. Then Eq. (4) suggests


f(x)=

∫∞

0

[

A(λ)cos(λx)+B(λ)sin(λx)

]

dλ, −∞<x<∞. (7)

Example 1 (continued).
Forf(x)as in Example 1, we find


A(λ)=π^1

∫∞

0

e−xcos(λx)dx=π( 11 +λ (^2) ),
B(λ)=^1
π


∫∞

0

e−xsin(λx)dx= λ
π( 1 +λ^2 )

,

and therefore we expect that
∫∞


0

[

1

π( 1 +λ^2 )cos(λx)+

λ
π( 1 +λ^2 )sin(λx)

]

dx=

{

e−x, 0 <x,
0 , x<0.

The foregoing derivation is not a proof, but it does suggest the following
theorem.

Free download pdf