1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

108 Chapter 1 Fourier Series and Integrals


Fourier Integral Representation Theorem. Let f(x)be sectionally smooth on
every finite interval, and let


∫∞

−∞|f(x)|dx be finite. Then at every point x,
∫∞

0

(

A(λ)cos(λx)+B(λ)sin(λx)

)

dλ=

1

2

(

f(x+)+f(x−)

)

,

−∞<x<∞, (8)

where


A(λ)=π^1

∫∞

−∞

f(x)cos(λx)dx, B(λ)=π^1

∫∞

−∞

f(x)sin(λx)dx. (9)


Equation (8) is called theFourier integral representation of f(x);A(λ)andB(λ)
in Eq. (9) are theFourier integral coefficient functionsoff(x). The right-hand
sideofEq.(8)wasalsoseenintheFourierseriesconvergencetheorem.Since
f(x)is sectionally smooth, the expression in Eq. (8) is the same asf(x)almost
everywhere, so we often write Eq. (7) instead of Eq. (8).


Example 2.
The function


f(x)=

{

1 , |x|<1,
0 , |x|> 1

has the Fourier integral coefficient functions


A(λ)=^1
π

∫∞

−∞

f(x)cos(λx)dx=^1
π

∫ 1

− 1

cos(λx)dx=2sin(λ)
πλ

,

B(λ)= 0.

Sincef(x)is sectionally smooth, the Fourier integral representation is legit-
imate, and we write


f(x)=

∫∞

0

2sin(λ)
πλ cos(λx)dλ.

(Actually the integral equals^12 atx=±1, so equality is not strictly correct at
these two points.) 


Example 3.
Find the Fourier integral representation off(x)=exp(−|x|).
Solution:Direct integration gives


A(λ)=π^1

∫∞

−∞

exp

(

−|x|

)

cos(λx)dx, (10)
Free download pdf