1.10 Complex Methods 113
v=0? Sometimes notation is compressed and, instead of the last line, we
write
f(x)=∫∞
−∞f(t)δ(t−x)dt.Althoughδis not, strictly speaking, a function, it is calledDirac’s delta func-
tion.1.10 Complex Methods
Fourier series
Suppose that a functionf(x)equals its Fourier series
f(x)=a 0 +∑∞
n= 1ancos(nx)+bnsin(nx).(We use period 2πfor simplicity only.) A famousformula of Euler states that
eiθ=cos(θ )+isin(θ ), wherei^2 =− 1.Some simple algebra then gives the exponential definitions of the sine and
cosine:
cos(θ )=^1
2(
eiθ+e−iθ)
, sin(θ )=^1
2 i(
eiθ−e−iθ)
.
By substituting the exponential forms into the Fourier series offwe arrive at
the alternate form
f(x)=a 0 +^1
2∑∞
n= 1an(
einx+e−inx)
−ibn(
einx−e−inx)
=a 0 +^1
2∑∞
n= 1(an−ibn)einx+(an+ibn)e−inx.We a r e n o w l e d t o d e fi n ecomplex Fourier coefficientsforf:c 0 =a 0 , cn=^1
2(an−ibn), c−n=^1
2(an+ibn), n= 1 , 2 , 3 ,....In terms of these two coefficients, we have
f(x)=c 0 +∑∞
n= 1(
cneinx+c−ne−inx)
=
∑∞
−∞cneinx. (1)