Miscellaneous Exercises 127
16.Show that the function given by the formulaf(x)=(π−x)/2, 0<x<
2 π, has the Fourier series
f(x)=∑∞
1sin(nx)
n ,^0 <x<^2 π.Sketchf(x)and its periodic extension.17.Use complex methods and a finite geometric series to show that
∑N
n= 1cos(nx)=sin(
(N+^12 )x)
−sin(^12 x)
2sin(^12 x).
Then use trigonometric identities to identify∑N
n= 1cos(nx)=sin(^12 Nx)cos( 1
2 (N+^1 )x)
sin(^12 x).18.Identify the partial sums of the Fourier series in Exercise 16 as
SN(x)=∑N
n= 1sin(nx)
n.The series of Exercise 17 isS′N(x). Use this information to locate the max-
ima and minima ofSN(x)in the interval 0≤x≤π.Findthevalueof
SN(x)at the first point in the interval 0<x<πwhereS′N(x)=0 for
N=5. Compare to(π−x)/2atthatpoint.19.Find the Fourier sine series of the function given by
f(x)={
sin(πx
a)
, 0 <x<a,
0 , a<x<π,assuming that 0<a<π.20.Find the Fourier cosine series of the function given in Exercise 19.
21.Find the Fourier integral representation of the function given by
f(x)={ 1 , 0 <x<a,
0 , x<0orx>a.