Miscellaneous Exercises 127
16.Show that the function given by the formulaf(x)=(π−x)/2, 0<x<
2 π, has the Fourier series
f(x)=
∑∞
1
sin(nx)
n ,^0 <x<^2 π.
Sketchf(x)and its periodic extension.
17.Use complex methods and a finite geometric series to show that
∑N
n= 1
cos(nx)=
sin
(
(N+^12 )x
)
−sin(^12 x)
2sin(^12 x)
.
Then use trigonometric identities to identify
∑N
n= 1
cos(nx)=
sin(^12 Nx)cos
( 1
2 (N+^1 )x
)
sin(^12 x).
18.Identify the partial sums of the Fourier series in Exercise 16 as
SN(x)=
∑N
n= 1
sin(nx)
n.
The series of Exercise 17 isS′N(x). Use this information to locate the max-
ima and minima ofSN(x)in the interval 0≤x≤π.Findthevalueof
SN(x)at the first point in the interval 0<x<πwhereS′N(x)=0 for
N=5. Compare to(π−x)/2atthatpoint.
19.Find the Fourier sine series of the function given by
f(x)=
{
sin
(πx
a
)
, 0 <x<a,
0 , a<x<π,
assuming that 0<a<π.
20.Find the Fourier cosine series of the function given in Exercise 19.
21.Find the Fourier integral representation of the function given by
f(x)=
{ 1 , 0 <x<a,
0 , x<0orx>a.