128 Chapter 1 Fourier Series and Integrals
22.Find the Fourier sine and cosine integral representations of the function
given byf(x)={a−x
a, 0 <x<a,
0 , a<x.
23.Find the Fourier sine integral representation of the functionf(x)={
sin(x), 0 <x<π,
0 ,π<x.24.Find the Fourier integral representation of the functionf(x)={ 1 /, α <x<α+,
0 , elsewhere.25.Use integration by parts to establish the equality
∫∞0e−λcos(λx)dλ=1
1 +x^2.26.TheequationinExercise25isvalidforallx. Explain why its validity
implies that
2
π∫∞
0cos(λx)
1 +x^2 dx=e−λ,λ> 0.27.Integrate both sides of the equality in Exercise 25 from 0 totto derive
the equality
∫∞0e−λsin(λt)
λ dλ=tan− (^1) (t).
28.Does the equality in Exercise 27 imply that
2
π
∫∞
0tan−^1 (t)sin(λt)dt=e−λ
λ?
29.FromExercise27derivetheequality
∫∞01 −e−λ
λ sin(λx)dλ=π
2 −tan− (^1) (x), x> 0.
30.Without using integration, obtain the Fourier series (period 2π)ofeach
of the following functions: