Miscellaneous Exercises 131
- & 52.f(x)=
0 , 0 <x<a
2, x=−a,a
2,a,
1 ,a
2 <x<a.
53–58.For each of these exercises,
a. find the Fourier cosine integral representation of the function;
b.sketch the even extension of the function.59–64.For each of these exercises,
a. find the Fourier sine integral representation of the function;
b.sketch the odd extension of the function.- & 59.f(x)=e−x, 0 <x.
- & 60.f(x)=
{
e−x, 0 <x<a,
0 , a<x.- & 61.f(x)=
{
1 , 0 <x<b,
0 , b<x.- & 62.f(x)=
{
cos(x), 0 <x<π,
0 ,π<x.- & 63.f(x)=
{ 1 −x, 0 <x<1,
0 , 1 <x.- & 64.f(x)=
{ 1 , 0 <x<1,
2 −x, 1 <x<2,
0 , 2 <x.
65.(Cesaro summability.) Letf(x)be a periodic function with period 2π
whose Fourier coefficients area 0 ,a 1 ,b 1 ,.... Then, the partial sum
SN(x)=a 0 +∑N
n= 1ancos(nx)+bnsin(nx)is an approximation tof(x)iff is sectionally smooth andNis large
enough. The average of these approximations isσN(x)=^1
N(
S 1 (x)+···+SN(x))
.
It is known thatσN(x)converges uniformly tof(x)iffis continuous.
Show thatσN(x)=a 0 +∑N
n= 1N+ 1 −n
N(
ancos(nx)+bnsin(nx)