1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

154 Chapter 2 The Heat Equation


w(a,t)= 0 , 0 <t,
w(x, 0 )=−T 0 −(T 1 −T 0 )x
a

≡g(x), 0 <x<a.

According to the preceding calculations,whas the form


w(x,t)=

∑∞

n= 1

bnsin(λnx)exp

(

−λ^2 nkt

)

(18)

and the initial condition is


w(x, 0 )=

∑∞

n= 1

bnsin

(nπx
a

)

=g(x), 0 <x<a.

The coefficientsbnare given by


bn=^2 a

∫a

0

[

−T 0 −(T 1 −T 0 )xa

]

sin

(

nπx
a

)

dx

=^2 T^0

a

cos(nπx/a)
(nπ/a)

∣∣

∣∣

a

0
−^2
a^2

(T 1 −T 0 )sin(nπx/a)−(nπx/a)cos(nπx/a)
(nπ/a)^2

∣∣

∣∣

a
0
=−^2 nTπ^0

(

1 −(− 1 )n

)

+^2 (T^1 n−πT^0 )(− 1 )n

bn=−^2

(

T 0 −T 1 (− 1 )n

)

.

Now the complete solution (see Fig. 3) is


u(x,t)=w(x,t)+T 0 +(T 1 −T 0 )xa,

where


w(x,t)=−

2

π

∑∞

n= 1

T 0 −T 1 (− 1 )n
n sin(λnx)exp

(

−λ^2 nkt

)

. (19)

ThesolutionofthisproblemisshownasananimationontheCD. 


We can discover certain features ofu(x,t)by examining the solution. First,
u(x, 0 )really is zero( 0 <x<a)because the Fourier series converges to−v(x)
att=0. Second, whentis positive but very small, the series forw(x,t)will
almost equal−T 0 −(T 1 −T 0 )x/a.Butatx=0andx=a, the series adds
up to zero (andw(x,t)is a continuous function ofx); thusu(x,t)satisfies
the boundary conditions. Third, whentis large, exp(−λ^21 kt)is small, and the

Free download pdf