1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

2.12 The Error Function 203


EXERCISES



  1. Show that erf(−z)=−erf(z),thatis,thaterfisanoddfunction.

  2. Carry out the integration indicated in Eq. (8).

  3. Verify these properties of the complementary error function:


a.

d
dzerfc(z)=−e

−z^2 √^2
π;
b.erfc( 0 )=1;
c. zlim→∞erfc(z)=0;
d.z→−∞lim erfc(z)=2;
e.erfc(z)is neither even nor odd.


  1. Verify by differentiating thatu(x,t)=erf(x/



4 kt)satisfies the heat equa-
tion (1).


  1. Ve r i f y t h a tu(x,t)=erf(x/



4 kt)satisfies the initial condition

u(x,t)=

{ 1 , 0 <x,
− 1 , x<0.


  1. In probability and statistics, thenormal,orGaussian, probability density
    function is defined as


f(z)=

1


2 π

e−z^2 /^2 , −∞<z<∞,

and the cumulative distribution function is

(x)=

∫x

−∞

f(z)dz.

Show that the cumulative distribution function and the error function are
related by(x)=[1+erf(x/


2 )]/2.


  1. Express this integral in terms of the error function:


I(x)=

∫ e−x
√xdx.


  1. Use error functions to solve the problem
    ∂^2 u
    ∂x^2 =


1

k

∂u
∂t,^0 <x,^0 <t,
Free download pdf