Miscellaneous Exercises 207
∂u
∂x(^0 ,t)=0,
∂u
∂x(a,t)=0,^0 <t,
u(x, 0 )=Ta^1 x,0<x<a.
- ∂
(^2) u
∂x^2
=^1
k
∂u
∂t
,0<x<a,0<t,
u( 0 ,t)=0, u(a,t)=T 0 ,0<t,
u(x, 0 )=0, 0 <x<a.
7.
∂^2 u
∂x^2 =
1
k
∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , u(a,t)=T 0 ,
u(x, 0 )=T 0 ,0<x<a.
- ∂
(^2) u
∂x^2
=^1
k
∂u
∂t
,0<x<a,0<t,
∂u
∂x
( 0 ,t)=^ T
a
, ∂u
∂x
(a,t)=^ T
a
,0<t,
u(x, 0 )=T 0 ,0<x<a.
9.
∂^2 u
∂x^2 =
1
k
∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , ∂u
∂x
(a,t)=0, 0 <t,
u(x, 0 )=T 1 ,0<x<a.
∂^2 u
∂x^2 =
1
k
∂u
∂t,0<x<a,0<t,
∂u
∂x(^0 ,t)=0,
∂u
∂x(a,t)=0,^0 <t,
u(x, 0 )=
T 0 , 0 <x<
a
2 ,
T 1 , a 2 <x<a.
- ∂
(^2) u
∂x^2 =
1
k
∂u
∂t,0<x<∞,0<t,
u( 0 ,t)=T 0 ,0<t,
u(x, 0 )=T 0
(
1 −e−αx
)
,0<x.
∂^2 u
∂x^2 =
1
k
∂u
∂t,0<x<∞,0<t,