Miscellaneous Exercises 207
∂u
∂x(^0 ,t)=0,∂u
∂x(a,t)=0,^0 <t,
u(x, 0 )=Ta^1 x,0<x<a.- ∂
(^2) u
∂x^2
=^1
k∂u
∂t,0<x<a,0<t,
u( 0 ,t)=0, u(a,t)=T 0 ,0<t,
u(x, 0 )=0, 0 <x<a.7.∂^2 u
∂x^2 =1
k∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , u(a,t)=T 0 ,
u(x, 0 )=T 0 ,0<x<a.- ∂
(^2) u
∂x^2
=^1
k∂u
∂t,0<x<a,0<t,
∂u
∂x( 0 ,t)=^ T
a, ∂u
∂x(a,t)=^ T
a,0<t,
u(x, 0 )=T 0 ,0<x<a.9.∂^2 u
∂x^2 =1
k∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , ∂u
∂x(a,t)=0, 0 <t,
u(x, 0 )=T 1 ,0<x<a.∂^2 u
∂x^2 =1
k∂u
∂t,0<x<a,0<t,
∂u
∂x(^0 ,t)=0,∂u
∂x(a,t)=0,^0 <t,u(x, 0 )=
T 0 , 0 <x<a
2 ,
T 1 , a 2 <x<a.- ∂
(^2) u
∂x^2 =
1
k∂u
∂t,0<x<∞,0<t,
u( 0 ,t)=T 0 ,0<t,
u(x, 0 )=T 0(
1 −e−αx)
,0<x.∂^2 u
∂x^2 =1
k∂u
∂t,0<x<∞,0<t,