1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
Miscellaneous Exercises 207
∂u
∂x(^0 ,t)=0,

∂u
∂x(a,t)=0,^0 <t,
u(x, 0 )=Ta^1 x,0<x<a.




(^2) u
∂x^2


=^1

k

∂u
∂t

,0<x<a,0<t,
u( 0 ,t)=0, u(a,t)=T 0 ,0<t,
u(x, 0 )=0, 0 <x<a.

7.

∂^2 u
∂x^2 =

1

k

∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , u(a,t)=T 0 ,
u(x, 0 )=T 0 ,0<x<a.




(^2) u
∂x^2


=^1

k

∂u
∂t

,0<x<a,0<t,
∂u
∂x

( 0 ,t)=^ T
a

, ∂u
∂x

(a,t)=^ T
a

,0<t,
u(x, 0 )=T 0 ,0<x<a.

9.

∂^2 u
∂x^2 =

1

k

∂u
∂t,0<x<a,0<t,
u( 0 ,t)=T 0 , ∂u
∂x

(a,t)=0, 0 <t,
u(x, 0 )=T 1 ,0<x<a.





∂^2 u
∂x^2 =

1

k

∂u
∂t,0<x<a,0<t,
∂u
∂x(^0 ,t)=0,

∂u
∂x(a,t)=0,^0 <t,

u(x, 0 )=




T 0 , 0 <x<

a
2 ,
T 1 , a 2 <x<a.




(^2) u
∂x^2 =


1

k

∂u
∂t,0<x<∞,0<t,
u( 0 ,t)=T 0 ,0<t,
u(x, 0 )=T 0

(

1 −e−αx

)

,0<x.





∂^2 u
∂x^2 =

1

k

∂u
∂t,0<x<∞,0<t,
Free download pdf