210 Chapter 2 The Heat Equation
24.Solve the eigenvalue problem by settingφ(ρ)=ψ(ρ)/ρ:
1
ρ^2(
ρ^2 φ′)′
+λ^2 φ= 0 , 0 <ρ<a,φ( 0 ) bounded,φ(a)= 0.Is this a regular Sturm–Liouville problem? Are the eigenfunctions or-
thogonal?
25.Solve this problem for heat conduction in a sphere. (Hint: Letu(ρ,t)=
v(ρ,t)/ρ.)1
ρ^2∂
∂ρ(
ρ^2 ∂∂ρu)
=^1 k∂∂ut, 0 <ρ<a, 0 <t,u( 0 ,t) bounded, u(a,t)= 0 , 0 <t,
u(ρ, 0 )=T 0 , 0 <ρ<a.26.State and solve the eigenvalue problem associated withe−x∂
∂x(
ex∂u
∂x)
=^1
k∂u
∂t, 0 <x<a, 0 <t,u( 0 ,t)= 0 , ∂u
∂x(a,t)= 0.27.Find the steady-state solution of the problem∂^2 u
∂x^2 +γ2 (T(x)−u)=^1
k∂u
∂t,^0 <x<a,^0 <t,
u( 0 ,t)=T 0 ,∂u
∂x(a,t)=^0 ,^0 <t,
whereT(x)=T 0 +Sx.
28.Determine whether or notλ=0isaneigenvalueoftheproblemφ′′+λ^2 xφ= 0 , 0 <x<a,
φ′( 0 )= 0 ,φ(a)= 0.29.Same question as Exercise 28, but with boundary conditionsφ′( 0 )= 0 ,φ′(a)= 0.