238 Chapter 3 The Wave Equation
Example.
Estimate the first eigenvalue of
φ′′+λ^2 φ= 0 , 0 <x< 1 ,
φ( 0 )=φ( 1 )= 0.
Let us tryy(x)=x( 1 −x), which satisfies the boundary conditions. Then
y′(x)= 1 − 2 xand
N(y)=
∫ 1
0
[
y′(x)
] 2
dx=
∫ 1
0
( 1 − 2 x)^2 dx=^1
3
,
D(y)=
∫ 1
0
y^2 (x)dx=
∫ 1
0
x^2 ( 1 −x)^2 dx=
1
30.
Therefore,N(y)/D(y)=10. We know, of course, thatφ 1 (x)=sin(πx),and
N(φ 1 )=
∫ 1
0
π^2 cos^2 (πx)dx=π
2
2
, D(φ 1 )=
∫ 1
0
sin^2 (πx)dx=^1
2
,
soN(φ 1 )/D(φ 1 )=λ^21 =π^2 <10, confirming Eq. (4).
Example.
Estimate the first eigenvalue of
(xφ′)′+λ^2
1
xφ=^0 ,^1 <x<^2 ,
φ( 1 )=φ( 2 )= 0.
The integrals to be calculated are
N(y)=
∫ 2
1
x(y′)^2 dx, D(y)=
∫ 2
1
1
x
y^2 dx.
The tabulation gives results for several trial functions. It is known that the first
eigenvalue and eigenfunction are
λ^21 =
(π
ln 2
) 2
∼= 20. 5423 ,
φ 1 (x)=sin
(πlnx
ln 2
)
.
The error for the best of the trial functions is about 1.44%
y(x)
√
x( 2 −x)(x− 1 ) ( 2 −x)(x− 1 ) (^2 −x)(xx−^1 )
N(y)
D(y)^23.^750022.^134920.^8379