4.3 Further Examples for a Rectangle 265
pected) that
X′′(x)
X(x)=−
Y′′(y)
Y(y)=constant.
The conditions atx=0andx=abecome
X′( 0 )= 0 , X′(a)= 0.
If we make the separation constant−λ^2 , we find a familiar eigenvalue problem
forXwhose solution is
X 0 (x)= 1 ,λ 0 = 0 ,
Xn(x)=cos(λnx), λn=nπ/a, n= 1 , 2 ,....
For the factorY(y), the differential equation is
Y 0 ′′= 0 , or Yn′′−λ^2 nYn= 0
with solution
Y 0 (y)=a 0 +b 0 y or Yn(y)=ancosh(λny)+bnsinh(λny).
Thus, the principle of superposition leads to the series solution
u(x,y)=a 0 +b 0 y+
∑∞
n= 1
(
ancosh(λny)+bnsinh(λny)
)
cos(λnx).
The boundary condition aty=0becomes
a 0 +
∑∞
1
ancos(λnx)= 0 , 0 <x<a,
from which we see that all thea’s are 0. Then aty=bwe have
b 0 b+
∑∞
n= 1
(
bnsinh(λnb)
)
cos(λnx)=
V 0 x
a ,^0 <x<a.
This is a slightly disguised cosine series. The coefficients are
b 0 b=^1
a
∫a
0
V 0
(
x
a
)
dx,
bnsinh(λnb)=^2
a
∫a
0
V 0
(
x
a
)
cos(λnx)dx.
See a color graphic of the solution on the CD.