302 Chapter 5 Higher Dimensions and Other Coordinates
Because differentiation with respect tox,y,ortgives the same result inside
or outside the integral with respect toz, and because of the boundary condi-
tion (12), we find that
1
c∫c0(
∂^2 u
∂x^2 +∂^2 u
∂y^2 +∂^2 u
∂z^2)
dz=∂(^2) v
∂x^2 +
∂^2 v
∂y^2 ,
andvsatisfies the two-dimensional heat equation,
∂^2 v
∂x^2 +
∂^2 v
∂y^2 =
1
k∂v
∂t,^0 <x<a,^0 <y<b,^0 <t.(See the exercises for details and for boundary and initial conditions.)
Ifz-variation cannot be ignored, we could try to get rid of they-variation
by introducing an average in that direction,
w(x,z,t)=1
b∫b0u(x,y,z,t)dy.From the boundary condition (13) we find that
∫b
0∂^2 u
∂y^2dy=∂u
∂y(x,b,z,t)−∂u
∂y(x, 0 ,z,t)=
(h
κ)[(
T 2 −u(x,b,z,t))
+
(
T 2 −u(x, 0 ,z,t))]
.
Ifbis small — the parallelepiped is more like a plate — we may accept the ap-
proximationu(x,b,z,t)+u(x, 0 ,z,t)≡ 2 w(x,z,t),whichwouldmake,from
the preceding expression,
1
b∫b0∂^2 u
∂y^2dy≡( 2 h
bκ)(
T 2 −w(x,z,t))
.
After applying the averaging process to Eqs. (10), (11), (12), and (14) we ob-
tain the following two-dimensional problem forw:
∂^2 w
∂x^2 +∂^2 w
∂z^2 +2 h
bκ(T^2 −w)=1
k∂w
∂t,^0 <x<a,^0 <z<c,^0 <t,
( 15 )
w( 0 ,z,t)=T 0 ,w(a,z,t)=T 1 , 0 <z<c, 0 <t,( 16 )
∂w
∂z(x,^0 ,t)=^0 ,∂w
∂z(x,c,t)=^0 ,^0 <x<a,^0 <t,(^17 )w(x,z, 0 )=^1
b∫b0f(x,y,z)dy, 0 <x<a, 0 <z<c.( 18 )