Miscellaneous Exercises 355
both directly and by assuming that bothu(r)and the constant function 1
haveBesselseriesontheinterval0<r<a:
u(r)=
∑∞
n= 1
CnJ 0 (λnr), 0 <r<a,
1 =
∑∞
n= 1
cnJ 0 (λnr), 0 <r<a.
(
Hint:^1 rdrd
(
rdJ^0 dr(λr)
)
=−λ^2 J 0 (λr).
)
6.Suppose thatw(x,t)andv(y,t)are solutions of the partial differential
equations
∂^2 w
∂x^2
=^1
k
∂w
∂t
, ∂
(^2) v
∂y^2
=^1
k
∂v
∂t
.
Show thatu(x,y,t)=w(x,t)v(y,t)satisfies the two-dimensional heat
equation
∂^2 u
∂x^2 +
∂^2 u
∂y^2 =
1
k
∂u
∂t.
7.Use the idea of Exercise 6 to solve the problem stated in Exercise 1.
8.Letw(x,y)andv(z,t)satisfy the equations
∂^2 w
∂x^2
+∂
(^2) w
∂y^2
= 0 , ∂
(^2) v
∂z^2
=^1
c^2
∂^2 v
∂t^2
.
Show that the productu(x,y,z,t)=w(x,y)v(z,t)satisfies the three-
dimensional wave equation
∂^2 u
∂x^2 +
∂^2 u
∂y^2 +
∂^2 u
∂z^2 =
1
c^2
∂^2 u
∂t^2.
9.Find the product solutions of the equation
1
r
∂
∂r
(
r∂u
∂r
)
=^1
k
∂u
∂t
, 0 <r, 0 <t,
that are bounded asr→ 0 +and asr→∞.
10.Show that the boundary value problem
(
( 1 −x^2 )φ′
)′
=−f(x), − 1 <x< 1 ,
φ(x)bounded atx=± 1 ,