Answers to Odd-Numbered Exercises 443
c.λ=±
nπ
a,n=^0 ,^1 ,^2 ,....
5.c=−a/2,c′=h−^1
μ
cosh
(μa
2
)
.
7.u(x)=T+c 1 cosh(γx)+c 2 sinh(γx),where
γ=
√
hC
κA
andc 1 =T 0 −T,c 2 =−κγsinh(γa)+hcosh(γa)
κγcosh(γa)+hsinh(γa)
c 1.
9.u(x)=T+H
(
1 −cosh(γx)−^1 −sinhcosh(γ(γa)a)sinh(γx)
)
,
whereH=I
(^2) R
hCandγ=
√
hC
κA.
11.u(y)=y(L−y)g/ 2 μ.
13.P=EI(nπ/L)^2 ,n= 1 , 2 ,....
15.u(x)=T+A
(
1 −cosh(γx)−^1 −cosh(γa)
sinh(γa)
sinh(γx)
)
,
A=g/κγ^2 ,andγ=
√
hC
κA
.
17.u(r)=c 1 ln(r/a)+c 2 , c 1 = h 0 h 1 (Ta −TW)/D, c 2 =[h 0 (κ/b+
h 1 ln(b/a))TW+(κ/a)h 1 Ta]/D,D=h 1 κ/a+h 0 κ/b+h 0 h 1 ln(b/a).
19.u(x)=
w 0
EI
(x 4
24 −
ax^3
6 +
a^2 x^2
2
)
.
Section 0.4
- a.u′′+^1 ru′−u=0,r=0;
b.u′′−^2 x
1 −x^2
u′=0,x=±1;
c.u′′+cot(φ)u′−u=0,φ=0,±π,± 2 π,...;
d.u′′+^2
ρ
u′+λ^2 u=0,ρ=0.
3.u( 0 )bounded;u(ρ)=H
6 κ
(
c^2 −ρ^2
)
+Hc
3 h
+T.
5.u(ρ)=
1
ρ
(
c 1 cos(μρ)+c 2 sin(μρ)
)
,
u(ρ)≡0unlessμa=π, 2 π,.... The critical radius isa=π
μ