Answers to Odd-Numbered Exercises 445
(iv) This is true becauseu 1 (x)andu 2 (x)are solutions of the homoge-
neous equation.
Chapter 0 Miscellaneous Exercises
1.u(x)=T 0 cosh(γx)+
(
T 1 −T 0 cosh(γa)
)sinh(γx)
sinh(γa).
3.u(x)=T 0.
5.u(r)=p(a^2 −r^2 )/4.
7.u(ρ)=H(a^2 −ρ^2 )/ 6 +T 0.
9.u(x)=T+(T 1 −T)cosh(γx)/cosh(γa).
11.u(x)=T 0 +(T−T 0 )e−γx.
13.h(x)=
√
ex(a−x)+h^20 +(h^21 −h^20 )(x/a).
15.u(x)=w( 1 −e−γxcos(γx))EI/k,whereγ=(k/ 4 EI)^1 /^4.
17.u(x)=
{
T 0 +Ax, 0 <x<αa,
T 1 −B(a−x), αa<x<a,
A=
κ 2
κ 1 ( 1 −α)+κ 2 α
T 1 −T 0
a , B=
κ 1
κ 2 A.
19.u(x)=^1
2
(
1 −e−^2 x
)
−^1
2
(
1 −e−^2 a
) 1 −e−x
1 −e−a
.
- a.u(x)=sinh(px)/sinh(pa);
b.u(x)=cosh(px)−cosh(pa)
sinh(pa)
sinh(px)=sinh
(
p(a−x)
)
/sinh(pa);
c.u(x)=cosh(px)/cosh(pa);
d.u(x)=cosh(p(a−x))/cosh(pa);
e.u(x)=−cosh(p(a−x))/psinh(pa);
f.u(x)=cosh(px)/psinh(pa).
23.u(x)=
x
2 ln
∣∣
∣∣^1 +x
1 −x
∣∣
∣∣−1.
- Multiply byu′and integrate:^12 (u′)^2 =^15 γ^2 u^5 +c 1 .Sinceu(x)→ 0
asx→∞,alsou′(x)→0; thusc 1 =0. Nowu′=−
√
2 γ^2 / 5 u^5 /^2 or
u−^5 /^2 u′=−
√
2 γ^2 /5(thenegativerootmakesudecrease) can be in-
tegrated to result in(− 2 / 3 )u−^3 /^2 =−
√
2 γ^2 / 5 x+c 2. The condition at
x=0givesc 2 =(− 3 / 2 )U−^3 /^2.