Chapter 1 449
Section 1.6
- π^1
∫π
−π
(
ln
∣∣
∣∣2cos
(
x
2
)∣∣
∣∣
) 2
dx=
∑∞
n= 1
1
n^2 =
π^2
6.
- a. Coefficients tend to zero.
b. Coefficients tend to zero, although
∫ 1
− 1
|x|−^1 dxis infinite.
- The integral must be infinite, because
∑∞
n= 1
a^2 n+b^2 n=∞.
Section 1.7
- Theequalitytobeprovedis
2sin
( 1
2 y
)( 1
2 +
∑N
n= 1
cos(ny)
)
=sin
((
N+
1
2
)
y
)
.
The left-hand side is transformed as follows:
2sin
( 1
2 y
)( 1
2 +
∑N
n= 1
cos(ny)
)
=sin
( 1
2
y
)
+
∑N
n= 1
2sin
( 1
2
y
)
cos(ny)
=sin
( 1
2 y
)
+
∑N
n= 1
(
sin
((
n+
1
2
)
y
)
−sin
((
n−
1
2
)
y
))
=sin
(
1
2 y
)
+
∑N
n= 1
sin
((
n+^12
)
y
)
−
N∑− 1
n= 0
sin
((
n+^12
)
y
)
=sin
((
N+
1
2
)
y
)
because all other terms cancel.
3.φ( 0 +)=1,φ( 0 −)=−1. See Fig. 1.
- a.f′(x)=^34 x−^1 /^4 for 0<x<π(andf′is an odd function). Thus,fhas a
vertical tangent atx=0, although it is continuous there.
b.φ(y)= |y|
3 / 4
2sin(^12 y)
cos
(
1
2 y
)
, −π<y<π