Chapter 1 449
Section 1.6
- π^1
∫π−π(
ln∣∣
∣∣2cos(
x
2)∣∣
∣∣
) 2
dx=∑∞
n= 11
n^2 =π^2
6.- a. Coefficients tend to zero.
b. Coefficients tend to zero, although∫ 1
− 1|x|−^1 dxis infinite.- The integral must be infinite, because
∑∞
n= 1a^2 n+b^2 n=∞.Section 1.7
- Theequalitytobeprovedis
2sin( 1
2 y)( 1
2 +
∑N
n= 1cos(ny))
=sin((
N+
1
2
)
y)
.
The left-hand side is transformed as follows:2sin( 1
2 y)( 1
2 +
∑N
n= 1cos(ny))
=sin( 1
2
y)
+
∑N
n= 12sin( 1
2
y)
cos(ny)=sin( 1
2 y)
+
∑N
n= 1(
sin((
n+1
2
)
y)
−sin((
n−1
2
)
y))
=sin(
1
2 y)
+
∑N
n= 1sin((
n+^12)
y)
−
N∑− 1
n= 0sin((
n+^12)
y)
=sin((
N+
1
2
)
y)
because all other terms cancel.
3.φ( 0 +)=1,φ( 0 −)=−1. See Fig. 1.- a.f′(x)=^34 x−^1 /^4 for 0<x<π(andf′is an odd function). Thus,fhas a
vertical tangent atx=0, although it is continuous there.
b.φ(y)= |y|3 / 4
2sin(^12 y)cos(
1
2 y)
, −π<y<π