1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

460 Answers to Odd-Numbered Exercises


w( 0 ,t)=0, 0 <t,
w(x, 0 )=−C 0 e−ax,0<x;

c. w(x,t)=e−a^2 Dt

∫∞

0

B(λ)sin(λx)e−λ^2 Dtdλ,

B(λ)=− 2 C 0 λ/

(

π

(

λ^2 +a^2

))

.

Section 2.11



  1. Break the interval of integration atx′=0.


3.B(λ)=0,A(λ)=

2 T 0 a
π( 1 +λ^2 a^2 ).


  1. The functionu(x,t), as a function ofx, is the famous “bell-shaped” curve.
    The smallertis, the more sharply peaked the curve.

  2. In Eq. (3) replace bothf(x′)andu(x,t)by 1.

  3. Using the integral given, obtain


u(x,t)=π^2

∫∞

0

1

λsin(λx)e

−λ^2 ktdλ.

Note, however, thatB(λ)= 2 /λπisnotfound using the usual formulas
for Fourier coefficient functions.

Section 2.12



  1. Ast→ 0 +,x/



4 πkt→

{

+∞ ifx>0,
−∞ ifx<0,

so erf(x/


4 πkt)→

{

+1ifx>0,
−1ifx<0.


  1. Make the substitutionx=y^2 .ThenI(x)=√πerf(√x)+c.

  2. Letzbe defined by erf(z)=−Ub/(Ui−Ub).Thenx(t)=z



4 kt.

Chapter 2 Miscellaneous Exercises



  1. SS:v(x)=T 0 ,0<x<a.
    EVP:φ′′+λ^2 φ=0,φ( 0 )=0,φ(a)=0,λn=nπ/a,φn=sin(λnx),
    n= 1 , 2 ,....

Free download pdf