Chapter 2 461
u(x,t)=T 0 +
∑∞
1
bnsin(λnx)e−λ^2 nkt,
bn=^2 a
∫a
0
(T 1 −T 0 )sin
(
nπx
a
)
dx.
- SS:v(x)=T 0 +
r
2 x(x−a),0<x<a.
EVP:φ′′+λ^2 φ=0,φ( 0 )=0,φ(a)=0,λn=nπ/a,φn=sin(λnx),
n= 1 , 2 ,....
u(x,t)=T 0 −r 2 x(x−a)+
∑∞
1
bnsin(λnx)exp
(
−λ^2 nkt
)
,
bn=
2
a
∫a
0
[
T 1 −T 0 +
r
2 x(x−a)
]
sin
(nπx
a
)
dx.
- SS: not needed.
(Hint: Put−γ^2 uon the other side of the equation. Separation of vari-
ables givesφ′′/φ=γ^2 +T′/kT=−λ^2 .)
EVP:φ′′+λ^2 φ=0,φ′( 0 )=0,φ′(a)=0,λ 0 =0,φ 0 =1;λn=nπ/a,
φn=cos(λnx),n= 1 , 2 ,....
u(x,t)=e−γ^2 kt
(
a 0 +
∑
ancos(λnx)exp
(
−λ^2 nkt
))
.
a 0 =T 1 /2,an=− 2 T 1
(
1 −cos(nπ)
)
/n^2 π^2.
7.u(x,t)=T 0.
9.u(x,t)=T 0 +
∑∞
n= 1
cnsin(λnx)exp
(
−λ^2 nkt
)
,
λn=(^2 n−^1 )π
2 a
,cn=(T^1 −T^0 )·^4
( 2 n− 1 )π
.
11.u(x,t)=T 0 +
∫∞
0
B(λ)sin(λx)exp
(
−λ^2 kt
)
dλ,B(λ)= −^2 λT^0
π(α^2 +λ^2 )
.
13.u(x,t)=
∫∞
0
A(λ)cos(λx)exp
(
−λ^2 kt
)
dλ,A(λ)=
2 T 0 sin(λa)
πλ.
15.u(x,t)=
∫∞
0
(
A(λ)cos(λx)+B(λ)sin(λx)
)
exp
(
−λ^2 kt
)
dλ,
A(λ)=T^0 sinπλ(λa),B(λ)=T^0 (^1 −πλcos(λa))
or