1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

462 Answers to Odd-Numbered Exercises


u(x,t)=√T^0
4 πkt

∫a

0

exp

(

−(x

′−x) 2
4 kt

)

dx′

=T^0

2

[

erf

(

a√−x
4 kt

)

+erf

(

√x
4 kt

)]

.


  1. Interpretation:uis the temperature in a rod with insulation on the cylin-
    drical surface and on the left end. At the right end, heat is being forced
    into the rod at a constant rate (becauseq(a,t)=−κ∂∂ux(a,t)=−κS,so
    heat is flowing to the left, into the rod). The accumulation of heat energy
    accounts for the steady increase of temperature.
    19.( 1 / 6 ka)u 3 −(a/ 6 k)u 1 satisfies the boundary conditions.


21.w(x,t)=−^2 u∂∂xu,whereu(x,t)=a 0 +


ancos(nπx)exp

(

−n^2 π^2 t

)

,

wherea 0 = 2

(

1 −e−^1 /^2

)

andan=^1 −e

− 1 / (^2) cos(nπ)
1
4 +(nπ)^2


.

23.u 2 =T 0 β^2 V
β 1 +β 2

,u 1 =T 0

(

1 − β^1 V
β 1 +β 2

)

,

whereV= 1 −exp(−(β 1 +β 2 )t)andβi=h/ci.

25.u(ρ,t)=^1 ρ

∑∞

n= 1

bnsin(λnρ)exp

(

−λ^2 nkt

)

,

λn=nπ/a,bn=

2

a

∫a

0

ρT 0 sin(λnρ)dρ.

27.v(x)=T 0 +Sx−S sinh(λx)
γcosh(γa)

.


  1. Ifλ=0, the differential equation isφ′′=0 with general solutionφ(x)=
    c 1 +c 2 x. The boundary conditions requirec 2 =0butallowc 1 =0. Thus,
    this value ofλpermits the existence of a nonzero solution, and therefore
    λ=0isaneigenvalue.

  2. ChooseB(ω)=^2 π


∫∞

0 f(t)sin(ωt)dt.Iffhas a Fourier integral represen-
tation, then this choice ofBwill makeu( 0 ,t)=f(t),0<t.


  1. a. v(x)=−Ix/aK+c 1 +c 2 ( 1 −e−aKx/T),
    c 1 =h 1 ,c 2 =(h 2 −h 1 +IL/aK)/( 1 −e−aKL/T).


b. ∂

(^2) w
∂x^2
+μ∂w
∂x


=^1

k

∂w
∂t

,0<x<L,0<t,
w( 0 ,t)=0, w(L,t)=0, 0 <t,
w(x, 0 )=h 0 (x)−v(x),0<x<L,
whereμ=aK/T,k=T/S.
Free download pdf