1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 3 463


c.w(x,t)=


cnφn(x)e−λ^2 nkT, φn(x)=e−μx/^2 sin(nπx/L),

λ^2 n=

(nπ
L

) 2


2
4

;

d.λ^2 n=( 7. 30 n^2 + 0. 0133 )× 10 −^4 m−^1.


  1. a. ∂u
    ∂t


=D∂

(^2) u
∂x^2
,0<x<L,0<t,
∂u
∂x(^0 ,t)=0, u(L,t)=S^0 ,0<t;
u( 0 ,t)=0, 0 <x<L;
b. u(x,t)=S 0 +


∑∞

n= 1

cncos(λnx)exp

(

−λ^2 nDt

)

,

cn= 4 S 0 (− 1 )n/( 2 n− 1 ).
37.T(y,t)= 300 − 150 y/c+


bnsinλn(y+c)exp(−λ^2 nkt),λn=nπ/ 2 c,
bn=(400 cos(nπ)+ 1000 )/nπ. c. Just before timet=0, the three terms
addto0.Justaftertimet=0, the integrated terms do not change sensi-
bly, but in the first term, neary=c,T(y,t)changes suddenly.

Chapter 3


Section 3.1



  1. [u]=L,[c]=L/t.


3.v(x)=(x

(^2) −ax)g
2 c^2.
Section 3.2
3.u(x,t)=


∑∞

n= 1

bnsin

(nπx
a

)

sin

(nπct
a

)

,

bn=

2 a( 1 −cos(nπ))
n^2 π^2 c.

5.u(x,t)=

∑∞

n= 1

ancos

(

nπct
a

)

sin

(

nπx
a

)

,an= 2 U 01 −cosnπ(nπ/^2 ).


  1. a. sin


(nπx
a

)

;b.sin

( 2 n− 1
2

πx
a

)

.
Free download pdf