Chapter 3 463
c.w(x,t)=
∑
cnφn(x)e−λ^2 nkT, φn(x)=e−μx/^2 sin(nπx/L),
λ^2 n=
(nπ
L
) 2
+μ
2
4
;
d.λ^2 n=( 7. 30 n^2 + 0. 0133 )× 10 −^4 m−^1.
- a. ∂u
∂t
=D∂
(^2) u
∂x^2
,0<x<L,0<t,
∂u
∂x(^0 ,t)=0, u(L,t)=S^0 ,0<t;
u( 0 ,t)=0, 0 <x<L;
b. u(x,t)=S 0 +
∑∞
n= 1
cncos(λnx)exp
(
−λ^2 nDt
)
,
cn= 4 S 0 (− 1 )n/( 2 n− 1 ).
37.T(y,t)= 300 − 150 y/c+
∑
bnsinλn(y+c)exp(−λ^2 nkt),λn=nπ/ 2 c,
bn=(400 cos(nπ)+ 1000 )/nπ. c. Just before timet=0, the three terms
addto0.Justaftertimet=0, the integrated terms do not change sensi-
bly, but in the first term, neary=c,T(y,t)changes suddenly.
Chapter 3
Section 3.1
- [u]=L,[c]=L/t.
3.v(x)=(x
(^2) −ax)g
2 c^2.
Section 3.2
3.u(x,t)=
∑∞
n= 1
bnsin
(nπx
a
)
sin
(nπct
a
)
,
bn=
2 a( 1 −cos(nπ))
n^2 π^2 c.
5.u(x,t)=
∑∞
n= 1
ancos
(
nπct
a
)
sin
(
nπx
a
)
,an= 2 U 01 −cosnπ(nπ/^2 ).
- a. sin
(nπx
a
)
;b.sin
( 2 n− 1
2
πx
a