1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

464 Answers to Odd-Numbered Exercises



  1. Product solutions areφn(x)Tn(t),where


φn(x)=sin(λnx), Tn(t)=exp

(

−kc^2 t/ 2

)

×

{

sin(μnt)
cos(μnt),

λn=nπ
a

,μn=


λ^2 nc^2 −^1
4

k^2 c^4.


  1. Product solutions areφn(x)Tn(t),where


φn(x)=sin

(nπx
a

)

,

Tn(t)=sin or cos

(n (^2) π (^2) ct
a^2


)

.

Frequenciesn^2 π^2 c/a^2.


  1. The general solution of the differential equation isφ(x)=Acos(λx)+
    Bsin(λx)+Ccosh(λx)+Dsinh(λx). Boundary conditions atx=0re-
    quireA=−C,B=−D;thoseatx=alead toC/D=−(cosh(λa)+
    cos(λa))/(sinh(λa)−sin(λa))and 1+cos(λa)cosh(λa)=0. The first
    eigenvalues areλ 1 = 1. 875 /a,λ 2 = 4. 693 /a, and the eigenfunctions are
    similar to the functions shown in the figure.


15.u(x,t)=

∑∞

n= 1

(

ancos(μnt)+bn(sinμnt)

)

sin(λnx):λn=nπ/a,

μn=


λ^2 n+γ^2 c,an= 2 h

(

1 −cos(nπ)

)

/nπ,bn=0,n= 1 , 2 ,....


  1. Convergence is uniform because



|bn|converges.

Section 3.3



  1. Table showsu(x,t)/h.


t
x 00. 2 a/c 0. 4 a/c 0. 8 a/c 1. 4 a/c
0. 25 a 0.5 0.5 0.2 − 0. 5 − 0. 2
0. 5 a 1.0 0.6 0.2 − 0. 6 − 0. 2

3.u( 0 , 0. 5 a/c)=0;u( 0. 2 a, 0. 6 a/c)= 0. 2 αa;u( 0. 5 a, 1. 2 a/c)=− 0. 2 αa.
(Hint:G(x)=αx,0<x<a.)

5.G(x)=

{ 0 , 0 <x< 0. 4 a,
5 (x− 0. 4 a), 0. 4 a<x< 0. 6 a,
a, 0. 6 a<x<a.
Notice thatGis a continuous function whose graph is composed of line
segments.
Free download pdf