Chapter 4 471
an=^8 aU^0 (−^1 )
n+ 1
π^2 ( 2 n− 1 )^2
,bn=0.
23.
Y′′
Y =
2 V
k
ψ′
ψ.Thefunctionφ(x−Vt)cancels from both sides.
25.φn(−Vt)=T 0 exp(λ^2 nkt/ 2 )bn,t>0,
φn(x)=T 1 exp(λ^2 nkx/ 2 V)bn,x>0,
where
∑∞
n= 1
bnsin(λny)=1, 0<y<b.
27.φ(x−ct)=e−c(x−ct)/k=e(c^2 t−cx)/k.Thegivencsatisfies c^2 =iωk,
soφ(x−ct)=eiωt−(^1 +i)px=e−pxei(ωt−px). Now form^12 (φ(x−ct)+
φ(x−ct))=e−pxcos(ωt−px)and so forth.
- Differentiate and substitute.
31.φ(^2 )−φ(^4 )+λ^2 φ=0,
φ( 0 )=0, φ(a)=0,
φ′′( 0 )=0, φ′′(a)=0.
33.λn=
nπ
a
√
1 +
(nπ
a
) 2
∼=nπ
a
.
Chapter 4
Section 4.1
1.f+d=0.
3.Y(y)=Asinh(πy),A= 1 /sinh(π ).
5.v(r)=aln(r)+b.
- ∂∂ux=∂v∂rcos(θ )−∂v∂θsinr(θ ),
∂u
∂y=
∂v
∂rsin(θ )+
∂v
∂θ
cos(θ )
r.
- a.
∂^2 u
∂x^2 +
∂^2 u
∂y^2 =0,^0 <x<a,0<y<b,
u( 0 ,y)=0, u(a,y)=0, 0 <y<b,
u(x, 0 )=f(x), u(x,b)=f(x),0<x<a.