1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
Chapter 5 481
5.φ(a,θ)=0andφ(r,θ)=φ(r,θ+ 2 π).


  1. SetJm(λmnr)=φn.Then(rφ′n)′=−λmnrφnand(rφ′q)′=−λmqrφqare the
    equations satisfied by the functions in the integrand. Follow the proof in
    Section 2.7.

  2. Generally, radii forφ 0 narer=λ 0 m/λ 0 nform= 1 , 2 ,...,n.Forn=2,
    r= 2. 405 / 5. 520 = 0 .436 and 1.


Section 5.8


1.φ(x)=xα[AJp(λx)+BYp(λx)], whereα=( 1 −n)/2,p=|α|.


  1. Forλ^2 =0,Z=A+Bz.
    5.φ(ρ+ct)=F ̄o(ρ+ct)+G ̄e(ρ+ct),
    ψ(ρ−ct)=F ̄o(ρ−ct)−G ̄e(ρ−ct),
    whereF ̄o(x)is the odd periodic extension with period 2aofxf(x)/2and
    G ̄e(x)is the even periodic extension with period 2aof∫(x/ 2 c)g(x)dx.

  2. The weight function isρ^2 and the interval is 0 toa.
    9.v(x)=(b−x)(x−a)/(a+b)x^2.

  3. No. The idea is to find a solution of the partial differential equation that
    depends on only one variable. That is impossible iffdepends on bothx
    andy.


13.an=−

∫b
av(x)Xn(x)x

(^3) dx
∫b
aX^2 n(x)x^3 dx


.

Section 5.9



  1. [k(k+ 1 )−μ^2 ]ak+ 1 −[k(k− 1 )−μ^2 ]ak− 1 =0, valid fork= 1 , 2 ,....


3.P 5 =

1

8

(

63 x^5 − 70 x^3 + 15 x

)

.

5.y=Aln

( 1 +x
1 −x

)

.


  1. Differentiate Eq. (9) and add to itntimes Eq. (8).

  2. Leibniz’s rule states that


(uv)(k)=

∑k
r= 0

(

k
r

)

u(k−r)v(r).
Free download pdf