486 Answers to Odd-Numbered Exercises
- a.
ω
ω^2 −π^2
( 1
πsin(πt)−
1
ωsin(ωt)
)
sin(πx);
b.
1
2 π^2
(
sin(πt)−πtcos(πt)
)
sin(πx).
- a.u(x,t)=x−sin(
√
ax)
sin(√a)e
−at+^2 a
π
∑∞
1
sin(nπx)exp(−n^2 π^2 t)
n(a−n^2 π^2 )cos(nπ);
b. The term−
xcos(nπx)
cos(nπ) exp
(
−n^2 π^2 t
)
arises.
Chapter 6 Miscellaneous Exercises
1.U(s)=
T 0
γ^2 +s+
γ^2 T
s(γ^2 +s),
u(x,t)=T 0 exp
(
−γ^2 t
)
+T
(
1 −exp
(
−γ^2 t
))
.
3.U(s)=
cosh(√sx)
s^2 cosh(√s),
u(x,t)=t−^1 −x
2
2
+
∑∞
n= 1
2cos(ρnx)
ρn^3 sin(ρn)
exp
(
−ρn^2 t
)
,
whereρn=(^2 n− 21 )π.
5.u(x,t)=x(^12 −x)−
∑∞
n= 1
4cos
(
ρn(x−^12 )
)
ρnsin(ρn/ 2 ) exp
(
−ρn^2 t
)
,
whereρn=( 2 n− 1 )π.
7.u(x,t)=x+
∑∞
1
2sin(nπx)
nπcos(nπ)exp
(
−n^2 π^2 t
)
.
9.U(x,s)=^1
s
(
1 −exp
(
−√sx
))
.
11.f(t)=√x
4 πt^3
exp
(
−x^2
4 t
)
.
13.u(x,t)=
∑∞
n= 0
[
erfc
( 2 n+ 1 −x
√
4 t
)
−erfc
( 2 n+ 1 +x
√
4 t
)]
.
15.F(s)= 2
∑∞
n= 1
1
s^2 +n^2