486 Answers to Odd-Numbered Exercises
- a.
ω
ω^2 −π^2( 1
πsin(πt)−1
ωsin(ωt))
sin(πx);b.1
2 π^2(
sin(πt)−πtcos(πt))
sin(πx).- a.u(x,t)=x−sin(
√
ax)
sin(√a)e−at+^2 a
π∑∞
1sin(nπx)exp(−n^2 π^2 t)
n(a−n^2 π^2 )cos(nπ);b. The term−xcos(nπx)
cos(nπ) exp(
−n^2 π^2 t)
arises.Chapter 6 Miscellaneous Exercises
1.U(s)=T 0
γ^2 +s+γ^2 T
s(γ^2 +s),
u(x,t)=T 0 exp(
−γ^2 t)
+T
(
1 −exp(
−γ^2 t))
.
3.U(s)=cosh(√sx)
s^2 cosh(√s),u(x,t)=t−^1 −x2
2+
∑∞
n= 12cos(ρnx)
ρn^3 sin(ρn)exp(
−ρn^2 t)
,
whereρn=(^2 n− 21 )π.5.u(x,t)=x(^12 −x)−∑∞
n= 14cos(
ρn(x−^12 ))
ρnsin(ρn/ 2 ) exp(
−ρn^2 t)
,
whereρn=( 2 n− 1 )π.7.u(x,t)=x+∑∞
12sin(nπx)
nπcos(nπ)exp(
−n^2 π^2 t)
.
9.U(x,s)=^1
s(
1 −exp(
−√sx))
.
11.f(t)=√x
4 πt^3exp(
−x^2
4 t)
.
13.u(x,t)=∑∞
n= 0[
erfc( 2 n+ 1 −x
√
4 t)
−erfc( 2 n+ 1 +x
√
4 t)]
.
15.F(s)= 2∑∞
n= 11
s^2 +n^2