Chapter 7 487
17.f(t)=∑∞
−∞1
2 aG
(inπ
a)
einπt/a.19.F(s)must be of the formF(s)=G(s)/H(s),whereG(s)is never infinite.
The solutions ofH(s)=0 must form an arithmetic sequence of purely
imaginary numbers, andH′(s)=0ifH(s)=0.21.F(s)=(^1 −e−πs) 2
s( 1 −e−^2 πs)=1 −e−πs
s( 1 +e−πs).23.F(s)=^1 +e−πs
(s^2 + 1 )( 1 −e−πs).25.u(x,t)=sin(ωx)sin(ωt)
sin(ω)+
∑∞
n= 1(− 1 )n+^12 ω
ω^2 −n^2 π^2sin(nπx)sin(nπt).27.U(x,s)= ω
s^2 +ω^2emx,m=^1
2−
√
1
4
+s.29.α^2 =1
2
(
1
4 ±
√(
1
4
) 2
+ω^2)
.Sinceαmust be real, take the+sign.Chapter 7
Section 7.1
- 16(ui+ 1 − 2 uij+ui− 1 )=−1,i= 1 , 2 ,3,u 0 =0,u 4 =1. Solution:u 1 =
11 /32,u 2 = 5 /8,u 3 = 27 /32. - 16(ui+ 1 − 2 ui+ui− 1 )−ui=−^12 i,i= 1 , 2 ,3,u 0 =0,u 4 =1. Solution:
u 1 = 0 .285,u 2 = 0 .556,u 3 = 0 .800. - 16(ui+ 1 − 2 ui+ui− 1 )=^14 i,i= 0 , 1 , 2 ,3,u 0 − 2 (u 1 −u− 1 )=1,u 4 =0.
Solution:u 0 = 0 .422,u 1 = 0 .277,u 2 = 0 .148,u 3 = 0 .051.
7.n=3:u 1 = 4 .76,u 2 = 4 .24;n=4:u 1 = 6 .65,u 2 = 9 .14,u 3 = 5 .92. The
actual solution,
u(x)=−sin(√
10 x)
sin(√
10 )
,
has a maximum of about 50. The boundary value problem is nearly
singular.