1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
Miscellaneous Exercises 51
14.Show that the boundary value problem
d^2 u
dx^2

+λ^2 u=f(x), 0 <x<a,
u( 0 )= 0 , u(a)= 0 ,
will have no solution or infinitely many solutions ifλis an eigenvalue of
d^2 u
dx^2 +λ

(^2) u= 0 ,
u( 0 )= 0 , u(a)= 0.


Chapter Review


See the CD for review questions.


Miscellaneous Exercises


In Exercises 1–15, solve the given boundary value problem, supplying bound-
edness conditions where necessary.


1.

d^2 u
dx^2 −γ

(^2) u=0, 0 <x<a,
u( 0 )=T 0 , u(a)=T 1.



  1. d


(^2) u
dx^2 −r=0,^0 <x<a (ris constant),
u( 0 )=T 0 , du
dx
(a)=0.


3.

d^2 u
dx^2 =0,^0 <x<a,
u( 0 )=T 0 , dudx(a)=0.


  1. d


(^2) u
dx^2
−γ^2 u=0, 0 <x<a,
du
dx(^0 )=0, u(a)=T^1.


5.^1
r


d
dr

(

rdu
dr

)

=−p,0<r<a,

u(a)=0.
Free download pdf