1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
Chapter 1 Fourier Series and Integrals 61
∫π
−π

sin(nx)dx= 0
∫π
−π

cos(nx)dx=

{ 0 , n= 0
2 π, n= 0
∫π
−π

sin(nx)cos(mx)dx= 0
∫π
−π

sin(nx)sin(mx)dx=

{ 0 , n=m
π, n=m
∫π
−π

cos(nx)cos(mx)dx=

{ 0 , n=m
π, n=m=0.

Table 1 Orthogonality relations

Each of the terms in the integrated series is zero, so the right-hand side of this
equation reduces to 2π·a 0 ,giving


a 0 =^1
2 π

∫π

−π

f(x)dx.

(In words,a 0 is the mean value off(x)over one period.)
Now multiplying each side of Eq. (1) by sin(mx),wheremis a fixed integer,
and integrating from−πtoπ,wefind


∫π

−π

f(x)sin(mx)dx=

∫π

−π

a 0 sin(mx)dx+

∑∞

n= 1

∫π

−π

ancos(nx)sin(mx)dx

+

∑∞

n= 1

∫π

−π

bnsin(nx)sin(mx)dx.

All terms containinga 0 orandisappear, according to the orthogonality rela-
tions. Furthermore, of all those containing abn, the only one that is not zero is
the one in whichn=m.(Noticethatnis a summation index and runs through
all the integers 1, 2 ,....Wechosemto be a fixed integer, son=monce.) We
now have the formula


bm=

1

π

∫π

−π

f(x)sin(mx)dx.

By multiplying both sides of Eq. (1) by cos(mx)(mis a fixed integer) and
integrating, we also find


am=

1

π

∫π

−π

f(x)cos(mx)dx.
Free download pdf