1.2 Arbitrary Period and Half-Range Expansions 65
case, the coefficients are
a 0 =^1
2 a∫a−af(x)dx, an=^1
a∫a−af(x)cos(nπx
a)
dx,bn=^1
a∫a−af(x)sin(nπx
a)
dx.(1)
Example.
Find the Fourier series off(x)=|sin(πx)|.
Solution:This function is periodic with period 1, soa=p/ 2 = 1 /2. To do the
integrals for the Fourier coefficients, we need to get rid of the absolute value
signs:
f(x)={sin(πx), 0 <x<1,
−sin(πx), − 1 <x<0.
Then, it is easy to calculatea 0 =^11∫ 1 / 2
− 1 / 2∣∣
sin(πx)∣∣
dx=∫ 0
− 1 / 2−sin(πx)dx+∫ 1 / 2
0sin(πx)dx=cos(ππx)∣∣
∣∣
0
− 1 / 2−cos(ππx)∣∣
∣∣
1 / 2
0=π^1 −−π^1 =π^2.(Recall that cos(±π/ 2 )=0.) The other coefficients are found similarly:an=^21∫ 1 / 2
− 1 / 2∣∣
sin(πx)∣∣
cos( 2 nπx)dx= 2
[∫ 0
− 1 / 2−sin(πx)cos( 2 nπx)dx+∫ 1 / 2
0sin(πx)cos( 2 nπx)dx]
=−π^4 · 4 n (^21) − 1.
Andbnis found to be 0 for alln. Consequently, the Fourier series of the function
is
∣∣
sin(πx)
∣∣
∼π^2 −π^4∑∞
n= 11
4 n^2 − 1 cos(^2 nπx).
We will see later that|sin(πx)|is equal to its series.
It is often necessary to use a Fourier series to represent a function that has
been defined only in a finite interval. We can justify such a representation by
making the given function part of a periodic function. If the given functionfis
defined on the interval−a<x<a, we may construct ̄f,theperiodic extension