68 Chapter 1 Fourier Series and Integrals
Let h(x)be an odd function defined in a symmetric interval−a<x<a. Then
∫a
−ah(x)dx= 0. Suppose now thatgis an even function in the interval−a<x<a. Since the
sine function is odd and the productg(x)sin(nπx/a)is odd,
bn=1
a∫a−ag(x)sin(nπx
a)
dx= 0.That is, all the sine coefficients are zero. Also, since the cosine is even, so is
g(x)cos(nπx/a),andthen
an=1
a∫a−ag(x)cos(nπx
a)
dx=2
a∫a0g(x)cos(nπx
a)
dx.Thus the cosine coefficients can be computed from an integral over the interval
from 0 toa.
Parallel results hold for odd functions: the cosine coefficients are all zero
and the sine coefficients can be simplified. We summarize the results.
Theorem 2.If g(x)is even on the interval−a<x<a(g(−x)=g(x)),then
g(x)∼a 0 +∑∞
n= 1ancos(nπx
a)
, −a<x<a,where
a 0 =^1
a∫a0g(x)dx, an=^2
a∫a0g(x)cos(nπx
a)
dx.If h(x)is odd on the interval−a<x<a(h(−x)=−h(x)),then
h(x)∼∑∞
n= 1bnsin(nπx
a)
, −a<x<a,where
bn=^2 a∫a0h(x)sin(
nπx
a)
dx. Very frequently, a function given in an interval 0<x<amust be repre-
sented in the form of a Fourier series. There are infinitely many ways of do-
ing this, but two ways are especially simple and useful: extending the given
function to one defined on a symmetric interval−a<x<aby making the
extended function either odd or even.