1.2 Arbitrary Period and Half-Range Expansions 71
Figure 5 Odd periodic extension (period 2) off(x)=x,0<x<1.
Figure 6 Even periodic extension (period 2) off(x)=x,0<x<1.
The following six correspondences (we will later show them to be equalities)
follow from the ideas of this section. Note that the inequalities showing the
applicable range ofxare crucial.
∑∞
n= 1
−2cos(nπ)
nπ
sin(nπx)∼
f(x)=x, 0 <x<1,
fo(x)=x, − 1 <x<1,
f ̄o(x), −∞<x<∞,
1
2
−
∑∞
n= 1
2 ( 1 −cos(nπ))
n^2 π^2
cos(nπx)∼
f(x)=x, 0 <x<1,
fe(x)=|x|, − 1 <x<1,
f ̄e(x), −∞<x<∞.
EXERCISES
1.Find the Fourier series of each of the following functions. Sketch the graph
of the periodic extension offfor at least two periods.
a. f(x)=|x|, − 1 <x<1;
b. f(x)=
{− 1 , − 2 <x<0,
1 , 0 <x<2;
c. f(x)=x^2 , −^12 <x<^12.