1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

78 Chapter 1 Fourier Series and Integrals


a.f(x)=|x|+x, − 1 <x<1;
b.f(x)=xcos(x), −π 2 <x<π 2 ;
c. f(x)=xcos(x), − 1 <x<1;

d.f(x)=

{ 0 , 1 <x<3,
1 , − 1 <x<1,
x, − 3 <x<−1.
3.TowhatvaluedoestheFourierseriesoff converge iff is acontinuous,
sectionally smooth, periodic function? Give an example.
4.State convergence theorems for the Fourier sine and cosine series that arise
from half-range expansions.
5.A function is given on the interval 0<x<2 by the formula

f(x)=

{x, 0 <x<1,
1 −x, 1 <x<2.

a.Sketch the odd periodic extension ̄f 0 (x)for− 4 <x<4.
b.Explain why ̄f 0 (x)is sectionally smooth.
c. Determine the value that the sine series offconverges to at these points:
x=1,x=2,x= 9 .6,x=− 3 .8.
6.For the same function given in Exercise 5, answer the same questions for
f ̄e(x), the even periodic extension offand its cosine series.
7.The series
∑∞
n= 1

(− 1 )n
n^2 cos(nx)
converges to a functionf(x)whose formula on the interval−π<x<πis

f(x)=A+Bx+Cx^2.

DetermineA,B,andC.
8.The series
∑∞
n= 1

1

n^3

sin(nx)

converges to a continuous periodic function. On the interval 0<x< 2 π,
this function coincides with a polynomialp(x)of degree 3. Find the polyno-
mial. Hint: Determine pointsxon the interval 0<x< 2 πwherep(x)=0.
Use this information to get a form forp(x).
Free download pdf