1547671870-The_Ricci_Flow__Chow

(jair2018) #1

  1. DILATIONS OF INFINITE-TIME SINGULARITIES 249


If (8.25) holds for some c > 0, there exists a time Tc: < oo such that for all
t 2: Tc: we have tsupMn IRm (-, t)I :S 2c. In particular,


Cc
sup !Re(-, t)I :S - ,
Mn t
for all t 2: Tc:, where C depends only on n. Hence

dt dL (T) :'S \dL dt (T) I :'S Cc --;-L (T)


for T 2: Tc:. Integrating this inequality from time Tc: to time t > Tc: implies

L (t) :SL (Tc:) ( ;c:) Cc:= L (Tc:) Tc:-Cc:. tee:.

In particular, if we choose 0 < c < 1/ (2C), then any two points in (Mn, g(t))
can be joined by a path of length
L (t) :S [diam (Mn' g(Tc:) )] yc:-Cc:. tl/2-o
where o ~ 1/2 - Cc > 0. This implies (8.26) and proves the claim. D
Because 3-dimensional nilmanifolds are known to be geometrizable, we
now describe how to obtain Type III limits under the assumption a > 0.
By definition of a, there exist sequences (xi, ti) with ti / oo such that
ti !Rm (xi, ti)I ~ ai---+ a.

Choose any such sequence. Also by definition of a, there is for any c > 0 a


time Tc: E [O, oo) such that
tlRm(x,t)I :S a+c
for all x E Mn and t E [Tc:, oo). The dilated solutions 9i (t) exist on the

time intervals [-ai, oo) and satisfy


if

that is if

IRmi(x,t)I = IRm(~i,ti)l \Rm(x,ti + IRm(~i,ti)I)\


I Rm ( x, ti+ IRm(~;,t;)I) I (ti + IRm(~;,t;)I)
!Rm (xi, ti) I ti + t
a+c
<--


  • ai + t'


t 2: !Rm (xi, ti) I (Tc: - ti).
Note that for any fixed c > 0, we have
!Rm (xi, ti)I (Tc: - ti)---+ - a
and
--a+c ---t a+c --
ai + t a + t
Free download pdf