Bibliography
[l] Altschuler, Steven; Angenent, Sigurd B.; Giga, Yoshikazu. Mean curvature flow
through singularities for surfaces of rotation. J. Geom. Anal. 5 (1995), no. 3, 293 -
358.
[2] Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature
bounds. Invent. Math. 102 (1990), no. 2, 429-445.
[3] Andrews, Ben. Entropy estimates for evolving hypersurfaces. Comm. Anal. Geom.
2 (1994), no. 1, 53- 64.
[4] Andrews, Ben. Personal communication.
[5] Angenent, Sigurd B. The zero set of a solution of a parabolic equation. J. Reine
Angew. Math. 390 (1988), 79 - 96.
[6] Angenent, Sigurd B.; Knopf, Dan. An example of neckpinching for Ricci flow on
sn+i. Preprint.
[7] Angenent, Sigurd B.; Velazquez, J. J. L. Degenerate neckpinches in mean curvature
flow. J. Reine Angew. Math. 482 (1997), 15 - 66.
[8] Aronson, D. G. The porous medium equation. Nonlinear diffusion problems (Monte-
catini Terme, 1985), 1- 46, Lecture Notes in Math., 1224, Springer, Berlin, 1986.
[9] Bando, Shigetoshi. Real analyticity of solutions of Hamilton's equation. Math. Z. 195
(1987), no. 1, 93 - 97.
[10] Bartz, J .; Struwe, Michael.; Ye, Rugang. A new approach to the Ricci flow on S^2.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 475 - 482.
[11] Bemelmans, Josef; Min-Oo; Ruh, Ernst A. Smoothing Riemannian metrics.
Math. Z. 188 (1984), no. 1, 69-74.
[12] Berger, Marcel. Les varietes Riemanniennes 1/ 4-pincees. (French) Ann Scuola
Norm. Sup. Pisa (3) 14 1960 161 - 170.
[13] Berger, Marcel. Sur quelques varietes riemanniennes suffisamment pincees. (French)
Bull. Soc. Math. France 88 1960 57- 71.
[14] Berger, Marcel. On the diameter of some Riemannian manifolds. Technical report,
University of California Berkeley (1962).
[15] Berger, M.; Ebin, D. Some decompositions of the space of symmetric tensors on a
Riemannian manifold. J. Differential Geometry 3 (1969) 379 - 392.
[16] Bernstein, Sergi N. Sur la generalisation du probleme de Dirichlet II. Math. Ann. 69
(1910) 82 - 136.
[17] Bernstein, Sergi N. Sur les equations du calcul des variations. Ann. Sci. Ecole
Norm. Sup. 29 (1912) 431 - 485.
[18] Bernstein, Sergi N. A limitation on the moduli of a sequence of derivatives of solu-
tions of equations of parabolic type. (Russian) Dok!. Akad. Nauk SSSR 18 (1938)
385 - 388.
[19] Bertozzi, Andrea L. The mathematics of moving contact lines in thin liquid films.
Notices Amer. Math. Soc. 45 (1998), no. 6, 689 - 697.
[20] Besse, Arthur L. Einstein manifolds. Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], 10. Springer-Verlag,
Berlin, 1987.
317