1547671870-The_Ricci_Flow__Chow

(jair2018) #1

318 BIBLIOGRAPHY


[21) Bryant, Robert. Local existence of gradient Ricci solitons. Preprint.
[22] Casson, Andrew; Jungreis, Douglas. Convergence groups and Seifert fibered 3-
manifolds. Invent. Math. 118 (1994), no. 3, 441-456.
[23) Cao, Huai-Dong. Existence of gradient Kahler-Ricci solitons. Elliptic and parabolic
methods in geometry (Minneapolis, MN, 1994), 1- 16, AK Peters, Wellesley, MA,
1996.
[24) Cao, Huai-Dong. Limits of solutions to the Kahler-Ricci flow. J. Differential
Geom. 45 (1997), no. 2, 257-272.
[25] Chavel, Isaac. Riemannian geometry - a modern introduction. Cambridge Tracts
in Mathematics, 108. Cambridge University Press, Cambridge, 1993.
[26] Cheeger, Jeff. Finiteness theorems for Riemannian manifolds. Amer. J. Math. 92
(1970) 61-74. '
[27) Cheeger, Jeff; Ebin, David G. Comparison theorems in Riemannian geome-
try. North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co.,
Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[28] Chow, Bennett. The Ricci flow on the 2-sphere. J. Differential Geom. 33 (1991),
no. 2, 325-334.
[29] Chow, Bennett. On the entropy estimate for the Ricci flow on compact 2-orbifolds.
J. Differential Geom. 33 (1991), no. 2, 597 - 600.
[30] Chow, Bennett. A gradient estimate for the Ricci-Kahler flow. Ann. Global
Anal. Geom. 19 (2001), no. 4, 321- 325.
[31) Chow, Bennett. On Harnack's inequality and entropy for the Gaussian curvature
flow. Comm. Pure Appl. Math. 44 (1991), no. 4, 469-483.
[32) Chow, Bennett; Hamitlon, Richard S. The Cross Curvature Flow of 3-manifolds
with Negative Sectional Curvature. arXiv:math.DG/0309008.
[33) Chow, Bennett; Lu, Peng. The time-dependent maximum principle for systems of
parabolic equations subject to an avoidance set. Pacific J. Math .. To appear. Also
see: arXi v: math. DG/0211209.
[34] Chow, Bennett; Wu, Lang-Fang. The Ricci flow on compact 2-orbifolds with curva-
ture negative somewhere. Comm. Pure Appl. Math. 44 (1991), no. 3, 275-286.
[35] Daskalopoulos, Panagiota; Hamilton, Richard S. Geometric estimates for the loga-
rithmic fast diffusion equation. Preprint.
[36] DeTurck, Dennis M. Deforming metrics in the direction of their Ricci tensors. J.
Differential Geom. 18 (1983), no. 1, 157-162.
[37] DeTurck, Dennis M. Deforming metrics in the direction of their Ricci tensors, im-
proved version, Collected Papers on Ricci Flow, ed. H.-D. Cao, B. Chow, S.-C. Chu,
and S.-T. Yau. Internat. Press, Somerville, MA, 2003.
[38] Ebin, D. The manifold of Riemannian metrics. 1970 Global Analysis (Proc. Sym-
pos. Pure Math., Vol. XV, Berkeley CA, 1968) 11-40, Amer. Math. Soc., Providence,
RI.
[39) Epstein, D. B. A. Periodic flows on three-manifolds. Ann. of Math. (2) 95 1972
66-82.
[40) Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan. Rotationally symmetric shrinking
and expanding gradient Kahler-Ricci solitons. J. Differential Geom. To appear.

[41] Filippas, Stathis; Kohn, Robert V. Refined asymptotics for the blowup of Ut - ~u =


uP. Comm. Pure Appl. Math. 45 (1992), no. 7, 821-869.
[42] Gabai, David. Convergence groups are Fuchsian groups. Ann. of Math. (2) 136
(1992), no. 3, 447- 510.
[43) Gabai, David. Homotopy hyperbolic 3-manifolds are virtually hyperbolic.
J. Amer. Math. Soc. 7 (1994), no. 1, 193-198.
[44) Gage, M.; Hamilton, Richard S. The heat equation shrinking convex plane curves.
J. Differential Geom. 23 (1986), no. 1, 69-96.
Free download pdf