1547671870-The_Ricci_Flow__Chow

(jair2018) #1
BIBLIOGRAPHY 319

[45] Gao, L. Zhiyong. Convergence of Riemannian manifolds; Ricci and Ln/^2 -curvature
pinching. J. Differential Geom. 32 (1990), no. 2, 349 - 381.
[46] Giga, Yoshikazu; Kohn, Robert V. Asymptotically self-similar blow-up of semilinear
heat equations. Comm. Pure Appl. Math. 38 (1985), no. 3, 297 - 319.
[47] Giga, Yoshikazu; Kohn, Robert V. Characterizing blowup using similarity variables.
Indiana Univ. Math. J. 36 (1987), no. 1, 1- 40.
[48] Giga, Yoshikazu; Kohn, Robert V. Nondegeneracy of blowup for semilinear heat
equations. Comm. Pure Appl. Math. 42 (1989), no. 6, 845 - 884.
[49] Grayson, Matthew A. Shortening embedded curves. Ann. of Math. (2) 129 (1989),
no. 1, 71 - 111.
[50] Greene, R. E.; Wu, H. Lipschitz convergence of Riemannian manifolds. Pacific
J. Math. 131 (1988), no. 1, 119-141.
[51] Greene, R. E. ; Wu, H. Addendum to: "Lipschitz convergence of Riemannian mani-
folds" Pacific J. Math. 140 (1989), no. 2, 398.
[52] Gromoll, Detlef; Meyer, Wolfgang. On complete open manifolds of positive curvature.
Ann. of Math. (2) 90 1969 75 - 90.
[53] Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces.
Based on the 1981 French original. With appendices by M. Katz, P. Pansu and
S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathe-
matics, 152. Birkhauser Boston, Inc., Boston, MA, 1999.
[54] Grove, Karsten; Petersen, Peter. (editors) Comparison geometry. Papers from the
Special Year in Differential Geometry held in Berkeley, CA, 1993-94. Mathematical
Sciences Research Institute Publications, 30. Cambridge University Press, Cam-
bridge, 1997.
[55] Gutperle, Michael; Headrick, Matthew; Minwalla, Shiraz; Schomerus, Volker. Space-
time Energy Decreases under World-sheet RC Flow. arXiv:hep-th/0211063.
[56] Hamilton, Richard S. Harmonic maps of manifolds with boundary. Lecture Notes in
Mathematics, Vol. 471. Springer-Verlag, Berlin-New York, 1975.
[57] Hamilton, Richard S. The inverse function theorem of Nash and Moser.
Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65- 222.
[58] Hamilton, Richard S. Three-manifolds with positive Ricci curvature. J. Differential
Geom. 17 (1982), no. 2, 255- 306.
[59] Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential
Geom. 24 (1986), no. 2, 153 - 179.
[60] Hamilton, Richard S. The Ricci flow on surfaces. Mathematics and general rela-
tivity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc.,
Providence, RI, 1988.
[61] Hamilton, Richard S. The Harnack estimate for the Ricci flow. J. Differential
Geom. 37 (1993), no. 1, 225-243.
[62] Hamilton, Richard S. An isoperimetric estimate for the Ricci flow on the two-
sphere. Modern methods in complex analysis (Princeton, NJ, 1992), 191 - 200, Ann. of
Math. Stud., 137, Princeton Univ. Press, Princeton, NJ, 1995.
[63] Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in
differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Internat. Press, Cam-
bridge, MA, 1995.
[64] Hamilton, Richard S. A compactness property for solutions of the Ricci flow.
Amer. J. Math. 117 (1995), no. 3, 545-572.
[65] Hamilton, Richard S. Four-manifolds with positive isotropic curvature.
Comm. Anal. Geom. 5 (1997), no. 1, 1-92.
[66] Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds.
Comm. Anal. Geom. 7 (1999), no. 4, 695 - 729.
[67] Hamilton, Richard; Isenberg, James. Quasi-convergence of Ricci flow for a class of
metrics. Comm. Anal. Geom. 1 (1993), no. 3-4, 543-559.

Free download pdf