1547671870-The_Ricci_Flow__Chow

(jair2018) #1

30 2. SPECIAL AND LIMIT SOLUTIONS


and define
7/J(z )
p(r) = p(r(z)). ~ - r.


Then the metric may be written as


g = dr2 + r2p2 de2.


Introduce ' Cartesian coordinates'


x ~ rcose,
y ~ rsine.

Then r^2 = x^2 + y^2 and we have


whence


x
dx = -dr -yde
r
dy = ¥_ dr + x de,
r

x y
dr = - dx + -dy
r r
y x
de= --r2 dx+ -r2 dy.

A simple calculation shows that

g = ( 1 + p2 r~ 1 y2) dx2 - ( 2xy p2 r~ 1) dx dy + ( 1 + p2 r~ 1 x2) dy2.


So g extends to a smooth metric if

f (r) ~ p(r):-1
r

extends to an even function which is smooth at r: = 0. By Taylor's theorem,


f ( )


= p (0) - 1 2p (0) p' (0) ~ dk (p^2 ) rk-^2 ( K -1)
r r2 + r + L.t drk kl + 0 r.
k=2 r=O

Hence f yields a smooth even function at zero if and only if p (0) = 1,


p' (0) = 0, and all odd derivatives of p^2 vanish at the origin. Noting that

dk(2) k- l


__ P_ = 2pp(k) + '"'c ·kP(j) P(k- j)
drk L.t J
j=l

for appropriate integers Cjk, we conclude by induction that f yields a smooth


even function at zero if and only if p (0) = 1 and p(^2 k+l) (0) = 0 for all k ?: 0.
To translate back to 7/J (z) = rp (r), we simply observe that
dk7/J dk-l p dk p
drk = k drk-l + r drk.
In particular, the observation
1 d7/J d7/J dp


  • --= - =p+r-
    <p d z dr dr'

Free download pdf