68 3. SHORT TIME EXISTENCE
Hence
D
LEMMA 3.2. The variation of the Levi-Civita connection r is given by
(3.3) atrij a k = Ike )
2 g Cvihje + vjhie - Vehij.
PROOF. Recall that
rij k = 2g^1 k£ (oigje + ojgie - oegij)
in local coordinates {xi}, where Oi ~ a~i. Hence
a k 1a k£
otrij = 2, otg · (oigje + ojgie - oegij)
- ~gk£ (ai (%tgje) + aj (%tgie) - ae (%tgij)).
In geodesic coordinates centered at p E Mn, one has rfj (p) = 0. It follows
that OiAjk = '! iAjk at p for any tensor A; in particular, Oigjk (p) = 0 for all
i, j, k. Thus we obtain
a k 1 ke ( a. a a )
at rij (p) = 2g vi atgje + v j atgie - v e at^9 ij (p) ·
Since both sides of this equation are components of tensors, the result holds
in any coordinate system and at any point. D
Since the Riemann curvature tensor is defined solely in terms of the
Levi-Civita connection, we can readily compute its evolution.
LEMMA 3.3. The evolution of the Riemann curvature tensor Rm is given
by
a 1 { vivjhkp + vivkhjp - vivphjk }
(3.4) ot Rfjk = 2iP.
- '! j '! ihkp - '! j '! khip + '! j '! phik
PROOF. In local coordinates {xi}, we have the standard formula
Rfjk = air;k - ajrfk + r~krfp -rfkr;v
Thus we compute