- EXISTENCE AND CONVERGENCE 83
If r =/= 0, the integral on the RHS is equal to C~n ( e;;t - 1). When r = 0, we
obtain Cit.
Similarly for the lower bound. D
REMARK 2.54. The qualitative dependence of the estimate (2.56) on the
sign of r should be compared to Corollaries 2.43 and 2.45.
The next estimate, a bound for the determinant of the complex Hessian
of cp, is also a straightforward application of the previous result and the
estimates (2.55) and (2.56) to equation (2.50).
LEMMA 2.55 (Estimates for the volume form-uniform when r :S 0). If
r :SO, then there exists a constant C 2: 1 such that
1 det (g 0 J3(x, t))
(2 57) - <. :S c
· C - det (9ajj(x, 0))
for all x EM· and t 2: 0. If r > 0, then
_en (efi:t_1) det (9ajj(X, t)) Gn (efi:t_1)
e r < :Ser
- det (9ajj(x,O))
for all x EM and t 2: 0.
PROOF. .Applying (2.47) to (2.35), we have
a det (9ajj(X, t)) rt
(2.58) - log =Ir - RI :S Geri.
at det (9ajj(X, 0))
Hence, if r =/= 0, then
det (9ajj(x, t)) Cn ( J:_t )
log :S - en - 1 '
det(gajj(x,O)) r
so that
_ Gn (efi:t-1) det (9ajj(X, t)) Gn (efi:t-1)
e r < :Ser.
- det (9ajj(x, 0))
In particular, if r < 0, then
e ~n < det (9ajj(x, t)) :S e-c;.
- det (9ajj(x, 0))
When r = 0, equation (2.58) is not strong enough to uniformly estimate
det(g °' (3-(x ' t)). In this. case we use
det(g°'i3 (x,O))
a det (9ajj(x, t)) af
-log =r-R=-llf=--,
at det (9ajj(X, 0)) at
which implies
det (9ajj(x, t))
log d ( -( O)) = -f (x, t) + f (x, 0).
et 9af3 x,