- EXISTENCE AND CONVERGENCE 93
On the other hand, applying (2.85) to bound the LP-norm of Mv(2) - wv,
we have for each v :2: 2,
1
( R;. L(R) (Mv(2) - Wv (y))Pdy)'
(2.90) :SC ( Mv(2) -Mv(l) +R
2
(q;n) II Hess(h)(rv,rv)llLq(B(2R))) ·
Combining (2.89) and (2.90), we have
(2.91)
1
(R~ n jB(R) r (w1 (y) - m1(2))Pdy) P
:SC (max (Mv(2) - Mv(l)) + RllY'hllco + R
2
<q;n) llY'VhllLq).
v::'.::2
Now let
w(sR) ~ t wv(sR) ~ t (sup Wv - inf Wv)
v=l v=l B(sR) B(sR)
N
= L (Mv (s) - mv (s)).
v=l
We then have
1
( R;n L(R) (w1(Y) - m, (2))")'
(2.92) :SC ( w(2R) - w(R) + RllY'hllco + R
2
<q-;_nl llY'VhllLq).
On the other hand, from (2.85) we also have
1
( R;n L(R) (M1 (2) - w1(y))P)'
(2.93) :SC ( w(2R) - w(R) + R
2
<q-;_nl llY'VhllLq).