106 2. KAHLER-RICCI FLOW
PROOF. Indeed, substituting fJ =a and J = 1 in (2.100), we have
(! -.6.) Raa'Y"f = Rap,v:yRμa"fiJ - Rap,'YvRμav"f + Raavp,RμD"f"f
1
- 2 ( Rap,Rμa"f"f + RμaRaP"f"f + Ryp,Raaμ"f + Rμ:yRaa'Yp,).
D
COROLLARY 2.83 (Ricci tensor evolution). The Ricci tensor satisfies the
Lichnerowicz heat equation:
8
(2.105) ot Ra'{J = .6..Ra'/l + Ra'fi"fJRo:y - Ra:yR'Y°!J = .6..LRa°/3·
REMARK 2.84. More generally, we say that a real (1, 1)-tensor ha°/3 sat-
isfies the Lichnerowicz heat equation if
8 1 1
ot ha°/3 = .6..Lha°/3 ~ .6..ha°/3 + Ra°!J'YJho:y - 2Ra:yh'Y°!J - 2R'Y°!Jha1·
See also (2.22).
PROOF. Summing (2.100) over"'(= 5 from 1 ton, we have
( :t -.6..) Ra°/3 = t ( :t -.6..) Ra°!J'Y'Y + Ro:yRa°!J'YJ
k=l
= Rap,v;yRμ°!J"fiJ - Ra'fi,"(vRμ°/Jv;y + Ra°/Jvp,Rμv + Ra°!J'YJRo:y
1
- 2 ( Rap,Rμ°/J + Rμ'{JRap, + RyμRa'{Jμ;y + Rμ:yRa'fi'Yμ)
= Ra°!J'YJRo:y - Rap,Rμ'/J'
after cancelling terms to get the last equality. D
REMARK 2.85. Equation (2.105) may also be derived from (2.36), (2.10)
and commuting covariant derivatives. In particular,
1
.6..Ra°/3 = 2 (\7 'Y Y' ;y + Y' ;y \7 'Y) Ra°/3
1 1
= 2 \7 'Y \7 °!JRa;y + 2 V' ;y \7 aR'Y°!J
1 1
= \7 a \7 '{JR - 2R'Y'fiaJRo:y + 2R 8 °/3RaJ
1 1
+ 2RaJRo°/3 - 2R1a'/JoR'YJ
(2.106) = \7 a \7 '{JR - Ra°!J'YJRo:y + RaJRo°/3·
That is,
\7 a \7 °!JR= .6..LRa°/3·
Based on the evolution equation (2.104) and Hamilton's maximum prin-
ciple for tensors (see Chapter 4 of Volume One or Part II of this volume) we
present the following.