1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. APPROXIMATE ISOMETRIES, COMPACTNESS OF MAPS, DIRECT LIMITS 153


need only prove inequality (4.2) for r = p + 1. Then


l'\JP+lTI g g = l'JP'\J g g g Tl


p-1
:S l'\J~*h '\J gTlg + cCp,qi,q2+1 L l'\Ji*h '\J gTI
k=O g
by the inductive hypothesis. For the first term on the RHS,

I '\J~h '\J gTlg :S l'\J~h ('\Jg - '\J h) Tlg + I ('\J h)P+i rig·


In turn, a sum of terms of the form

I ('\J h)k (r g - rh) lg I ('\J *h)p-k rig'


where 0 :S k < p, bounds the first term. As was shown in the proof of

Lemma 3 .11,
k+l
l'\Ji*h (rg -r<I>*h)I :S ck L l'\J~*hgl
g j=l g
k+l

:S ck~ ~ (1 + c)(2+j)/^2 1'\Jj q, h gl h


j=l
2(k+4)/2

::::; ck v'2 2-1 10


for some constant Ck depending on k, where we have used that ~ is an
(10, p + 1)-approximate isometry and 0 :S k :Sp. Hence we have bounded the
term l'\J~h '\J gTlg· Similarly, we can bound the terms l'Jih '\J gTI, where
O:Sk:Sp-1.


Putting it all together, we see that in the estimate of l'\Jg+irlg, the

coefficients of l'Ji*hT\g are all bounded and all have an c in them except


l'\J~-t~Tlg. Thus we get
p
\'\J~+ir\g :S l'\J~-t~rl + 10Cp+i,q 1 ,q2 L l'\Ji*hrl.
g k=O g

This completes the proof of the induction. D


COROLLARY 4.6 (Norms of covariant derivatives of tensors, II). There
exist Cp,O,q 2 for p, q2 E N, such that if~ : (Mn, g) --+ (Nn, h) is an (10,p)-

approximate isometry, then for any (0, q2)-tensor T field on N

1v; ('T) I,-<; (1 + s)<"+q,J/^2 (1v;;r1h + ECp,O,q, ~ 1v~rlh)


for each 1 :S r :S p.