1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

164 4. PROOF OF THE COMPACTNESS THEOREM


such that K (ae, f3e) E Ke is a monotone function of£. If k 2: K (ae, f3e),


then k E Kg. Hence either B~£ n B~£ is empty for all k 2: K ( ae, f3e) or it is

nonempty for all k 2: K ( ae, f3e). D


DEFINITION 4.30. Let K (r) ~ max (K' (r), { K (a, /3) : a, f3 _:S A (r)}).

By definition, we have that if a, f3 :SA (r), then K (a, /3) :SK (r). Note

also that K (r) is increasing. This proves statement (6) of Lemma 4.18.


3.4. Estimates on inclusions of intersecting balls. Now to com-

plete the proof of Lemma 4.18 (only statements (5) and (7) remain to be
proved), we recaUDefinition 4.26 and prove the following proposition.


PROPOSITION 4.31. If Bk n B~ i= 0' where k 2: K (max { rk' r~})' then
-13 - ->(3.

we have Bk C Bk and Bk C Bk.

PROOF. Recall estimate (4.9), which gives

rZ :S rk + 10>. [OJ.


Now, we can estimate >./3 by



./3 2: ~>. [r~] 2: ~>. [rk + 10>. [OJ].



Recall that the definition of >. is


>. [rJ = ce-^0 r.

So >. [OJ = c and >. [rk + 10>. [OJ] = e-lOcC >. [rk]. Hence


>./3 > ~e-lOcC>.[raJ > ~e-lOcCAa


  • 2 k - 4
    or
    ). a :S 4 e10cC >./3.


Choose a y E Bk n BZ. Then for each x E Bk we get

d ( x, x~) :S d (x, x/:) + d (xk', y) + d (y, x~)

< 5>.0i + 5>.0i + 5>,/3


:S 20e^10 cC >./3 + 20elOcC >./3 + 5>./3

:S 45 elOcC >,/3.

Similarly, if x E Bk, then


d (x,x%) :S d(x,xk') + d(xk',y) + d (y,x%)

< 45e10cC A a + 5>. a + 5>,/3


:S 45e10cC ( 4e10cC >,/3) + 5 ( 4elOcC >,/3) + 5>,/3


:S 205e20cC >./3.

D
Free download pdf